Главная > Численные методы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА II. АППРОКСИМАЦИЯ ФУНКЦИЙ

В главе II рассмотрены способы построения приближенных формул для заданной функции. В § 1 изложен способ интерполяции; он несложен и обеспечивает хорошую точность на небольших отрезках. В § 2 рассмотрена среднеквадратичная аппроксимация, частным случаем которой является метод наименьших квадратов; она позволяет строить приближенные формулы, пригодные на больших отрезках. В § 3 кратко изложены основные сведения о равномерной аппроксимации.

§ 1. Интерполирование

1. Приближенные формулы.

Если задана функция , то это означает, что любому допустимому значению сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоемко. Например, может быть определено как решение сложной задачи, в которой играет роль параметра, или у измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно.

Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчетах, где ее приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближенной формулой, т. е. подобрать некоторую функцию которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают

Близость получают введением в аппроксимирующую функцию свободных параметров и соответствующим их выбором.

Подбор удачного вида функциональной зависимости искусство; некоторые советы по этому поводу будут даны в § 1, п. 8. А определение наилучших (в требуемом смысле) параметров формулы делается стандартными методами, которые и будут рассмотрены в этой главе.

1
Оглавление
email@scask.ru