Главная > Аналитическая геометрия
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 4. Гипербола и ее асимптоты.

Гиперболой называется геометрическое место точек, разность расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная (эта постоянная должна быть положительной и меньше расстояния между фокусами).

Обозначим эту постоянную через 2а, расстояние между фокусами через и выберем оси координат так же, как и в § 3. Пусть — произвольная точка гиперболы.

По определению гиперболы

В правой части равенства нужно выбрать знак плюс, если и знак минус, если

Так как то последнее равенство можно записать в виде:

Это и есть уравнение гиперболы в выбранной системе координат.

Освобождаясь в этом уравнении от радикалов (как и в § 3), можно привести уравнение к простейшему виду.

Перенося первый радикал в правую часть равенства и возводя обе части в квадрат, после очевидных преобразований получим:

Возведя еще раз обе части равенства в квадрат, сделав приведение подобных членов и разделив на свободный член, получим:

Так как , то величина положительна. Обозначая ее через , т. е. полагая

получим каноническое уравнение гиперболы.

Исследуем форму гиперболы.

1) Симметрии гиперболы. Так как уравнение (3) содержит только квадраты текущих координат, то оси координат являются осями симметрии гиперболы (см. аналогичное утверждение для эллипса). Ось симметрии гиперболы, на которой располагаются фокусы, называется фокальной осью. Точка пересечения осей симметрии — центр симметрии — называется центром гиперболы. Для гиперболы, заданной уравнением (3), фокальная ось совпадает с осью Ох, а центром является начало координат.

2) Точки пересечения с осями симметрии. Найдем точки пересечения гиперболы с осями симметрии — вершины гиперболы. Полагая в ураннении найдем абсциссы точек пересечения гиперболы с осью

Следовательно, точки являются вершинами гиперболы (рис. 51); расстояние между ними равно 2а. Чтобы найти точки пересечения с осью Оу, положим в уравнении Получим для определения ординат этих точек уравнение

откуда

т. е. для у мы получили мнимые значения; это означает, что ось Оу не пересекает гиперболы.

Рис. 51.

В соответствии с этим ось симметрии, пересекающая гиперболу, называется действительной осью симметрии (фокальной осью), ось симметрии, которая не пересекает гиперболы, называется мнимой осью симметрии. Для гиперболы, заданной уравнением (3), действительной осью симметрии является ось , мнимой осью симметрии — ось Отрезок соединяющий вершины гиперболы, а также его длина 2а называются действительной осью гиперболы. Если на мнимой оси симметрии гиперболы отложить в обе стороны от ее центра О отрезки ОБ, и длиною b, то отрезок а также его длина называются мнимой осью гиперболы. Величины а и b называются соответственно действительной и мнимой полуосями гиперболы.

3) Форма гиперболы. При исследовании формы гиперболы достаточно рассматривать положительные значения х и у, потому что кривая симметрично расположена относительно осей координат.

Так как из уравнения (3) следует, что 1, то может изменяться от а до Когда увеличивается от а до то У тоже увеличивается от 0 до Кривая имеет форму, изображенную на рис. 51. Она располагается вне полосы, ограниченной прямыми и состоит из двух отдельных ветвей. Для любой точки М одной из этих ветвей (правая ветвь), для любой точки М другой ветви (левая ветвь).

4) Асимптоты гиперболы. Чтобы более ясно представить себе вид гиперболы, рассмотрим две прямые линии, тесно с нею связанные — так называемые асимптоты.

Предполагая х и у положительными, разрешим уравнение (3) гиперболы относительно ординаты у:

Сопоставим уравнение с уравнением прямой линии называя соответствующими две точки расположенные соответственно на этой прямой и на гиперболе и имеющие одну и ту же абсциссу (рис. 51). Очевидно, и разность Y — у ординат соответствующих точек выражает расстояние между ними, т. е.

Покажем, что при неограниченном возрастании расстояние MN, убивая, стремится к нулю. В самом деле,

откуда

После упрощения получим:

Из последней формулы мы усматриваем, что при неограниченном возрастании абсциссы расстояние MN убывает и стремится к нулю. Отсюда следует, что когда точка М, двигаясь по гиперболе в первом квадранте, удаляется в бесконечность, то ее расстояние до прямой уменьшается и стремится к нулю. То же обстоятельство будет иметь место при движении точки М по гиперболе в третьем квадранте (вследствие симметрии относительно начала координат О).

Наконец, вследствие симметрии гиперболы относительно оси Оу мы получим вторую прямую симметрично расположенную с прямой к которой также будет неограниченно приближаться точка М при движении по гиперболе и удалении в бесконечность (во втором и четвертом квадрантах).

Эти две прямые линии носят название асимптот гиперболы, они, как мы видели, имеют уравнения:

Очевидно, асимптоты гиперболы располагаются по диагоналям прямоугольника, одна сторона которого параллельна оси Ох и равна 2а, другая — параллельна оси Оу и равна а центр лежит в начале координат (см. рис. 51).

При вычерчивании гиперболы по ее уравнению рекомендуется предварительно построить ее асимптоты.

Равносторонняя гипербола. В случае гипербола называется равносторонней; ее уравнение получается из (3) и имеет вид:

Очевидно, угловые коэффициенты асимптот для равносторонней гиперболы будут Следовательно, асимптоты равносторонней гиперболы перпендикулярны между собой и делят пополам углы между ее осями симметрии.

1
Оглавление
email@scask.ru