Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 109. Движение электронов в полупроводниках.Полупроводники с электронной и дырочной проводимостью. В предыдущем параграфе мы видели, что в полупроводниках, как и в металлах, электрический ток осуществляется движением электронов. Однако условия и характер движения электронов в полупроводниках отличаются существенными особенностями, и это обусловливает своеобразные электрические свойства полупроводников.
В металлах концентрация свободных электронов очень велика, так что большая часть атомов оказывается ионизованной; практически вся проводимость металлов объясняется поведением «свободных электронов», как об этом говорилось в гл. VII. В полупроводниках же, где концентрация свободных электронов значительно меньше, нужно учитывать, наряду с движением в электрическом поле этих свободных электронов, и другой процесс, который может играть не меньшую роль в их проводимости. Сравнительно немногочисленные электроны, сделавшиеся свободными, оторвались от некоторых атомов полупроводника, которые, таким образом, превратились в ионы. Каждый из таких ионов окружен большим числом нейтральных атомов. Нейтральные атомы, находящиеся в непосредственной близости к иону, могут легко отдавать ему свой электрон, делая ион нейтральным, но сами превращаясь в ионы. Таким образом, этот обмен электронами приводит к тому, что место положительного иона в полупроводнике меняется, т. е. дело обстоит так, как будто переместился положительный заряд. Итак, наряду с перемещением свободных электронов, в полупроводнике может происходить процесс, имеющий характер перемещения положительных зарядов. Пока в полупроводнике не действует внешнее электрическое поле, оба эти процесса имеют хаотический характер, так что в среднем каждому электрону, смещенному в одном направлении, соответствует перемещение электрона в противоположном направлении; то же происходит и с перемещением положительно заряженных мест. Но при наложении поля оба процесса получают преимущественное направление: свободные электроны движутся в некотором избытке против поля, а положительные места – в некотором избытке по полю. Оба эти преимущественные перемещения дают ток одного направления (по полю), и результирующая проводимость обусловливается обоими процессами. Рис. 184 иллюстрирует описанный процесс. Если мы представим себе цепочку атомов полупроводника, в одном месте которой образовался положительный ион 1, то под действием сил поля будет происходить перенос электрона от атома 2 к иону 1, затем от атома 3 к иону 2, от атома 4 к иону 3 и т. д., а результатом будет перемещение положительного заряженного места в обратном направлении.
Рис. 184. Грубая модель «дырочной» проводимости в полупроводниках: светлые кружки – нейтральные атомы, темный кружок – положительный ион. Стрелками указано направление последовательных переходов электронов от нейтральных атомов к ионам. Место положительного заряда перемещается в обратном направлении – по полю Таким образом, в полупроводнике имеет место и движение свободных электронов против поля и перенос их от нейтральных атомов к ионам, равносильный движению положительного заряда по направлению поля. То место полупроводника, где вместо нейтрального атома имеется положительный ион, называют дыркой и говорят, что ток в проводнике осуществляется частично движением свободных электронов против поля и частично движением дырок по полю. Нужно только помнить при этом, что фактически всегда имеет место только движение электронов, но движение связанных электронов от атомов к ионам приводит к такому результату, как будто движутся положительно заряженные дырки. Встречаясь с дыркой, свободный электрон может воссоединиться с положительным ионом. При этом свободный электрон и дырка исчезают. Этот процесс называют рекомбинацией. В идеально чистом полупроводнике без всяких чужеродных примесей каждому освобожденному тепловым движением или светом электрону соответствовало бы образование одной дырки, т. е. число участвующих в создании тока электронов и дырок было бы одинаково. Однако
такие идеально чистые полупроводники в природе не встречаются, а изготовить их
искусственно необычайно трудно. Малейшие следы примесей коренным образом меняют
свойства полупроводников. В одних случаях влияние примесей проявляется в том,
что «дырочный» механизм проводимости становится практически невозможным, и ток в
полупроводнике осуществляется только движением свободных электронов. Такие
полупроводники называются электронными полупроводниками или полупроводниками Наряду
с полупроводниками Чем
объясняется это различие, мы покажем на примере важнейшего с точки зрения
технических применений полупроводника – германия. Германий – химический элемент
с порядковым номером 32 и атомной массой 72,59. В периодической системе
элементов он находится в четвертом столбце и, как все элементы этой группы,
является четырехвалентным, т. е. обладает четырьмя связями (валентными
электронами), позволяющими ему соединяться с другими элементами. На рис. 185 условно
изображено строение кристалла германия. Кружки с цифрами «+4» изображают
отдельные атомы германия, каждый из которых связан с четырьмя своими соседями
парными связями (двойные линии на рис. 185). Эта связь создается
взаимодействием одного из валентных электронов данного атома с одним из
валентных электронов его соседа. Если под действием теплового движения или
поглощенного света в каком-нибудь месте кристалла (точка
Рис. 185. Схема строения кристалла германия: кружки с цифрой «+4» - атомы германия, кружки с цифрами «+5» и «+3» - внедренные в германий атомы пятивалентного мышьяка и трехвалентного индия Представим
себе теперь, что в германии имеется небольшая примесь какого-нибудь
пятивалентного элемента, скажем мышьяка, т. е. что небольшая доля атомов
германия в кристалле замещена атомами мышьяка (точка Представим
себе теперь, что мы ввели в германий примесь какого-нибудь трехвалентного
элемента, например индия (точка Разобранный нами пример германия с примесями мышьяка и индия является относительно простым. На практике приходится встречаться и с более сложными случаями влияния примесей на электрические свойства полупроводников. Но во всяком случае этот пример показывает, каким образом даже ничтожные следы примесей могут коренным образом изменять электрические свойства полупроводников и механизм прохождения через них тока. Это создает много трудностей в работе с полупроводниками, но это же обеспечивает и возможность получения полупроводников, с разнообразными свойствами, дающими возможность применять их для решения очень важных и разнообразных технических задач. Различие между электронной и дырочной проводимостью полупроводников позволило объяснить ряд фактов, которые раньше казались загадочными. В §84, например, говоря о полупроводниковых термоэлементах, мы указали, что в одних случаях ток в горячем спае течет от металла к полупроводнику, а в других случаях – от полупроводника к металлу. Теперь мы можем понять, в чем здесь дело. В электронном полупроводнике скорость электронов в горячем конце больше, чем в холодном. Поэтому электроны просачиваются или, как говорят, диффундируют от горячего конца к холодному до тех пор, пока создающееся вследствие такого перераспределения зарядов электрическое поле не остановит этот поток диффундирующих электронов. Когда такое равновесие установится, то горячий конец, потерявший электроны, окажется заряженным положительно, а холодный конец, получивший избыток электронов, зарядится отрицательно. Иными словами, между горячим и холодным концами возникает некоторая положительная разность потенциалов. В дырочном полупроводнике, наоборот, диффундируют от горячего конца к холодному дырки. Горячий конец заряжается отрицательно, а холодный – положительно. Знак разности потенциалов между горячим и холодным концами обратный.
|
1 |
Оглавление
|