Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока.Включим
в цепь переменного тока две параллельные ветви, содержащие активные
сопротивления
Рис. 301. Сопротивления в параллельных ветвях цепи переменного тока одинаковы по своей природе Таким образом, если сопротивления параллельных ветвей одинаковы по своей природе, то ток в неразветвленной цепи равен сумме токов в отдельных ветвях. Это справедливо, конечно, и в том случае, когда имеются не две ветви, а любое их число. Заменим
теперь в одной из ветвей (рис. 302,а и б) активное сопротивление емкостным
(конденсатором) или индуктивным (катушкой с большой индуктивностью и малым
активным сопротивлением). Опыт дает в этом случае результат, кажущийся на
первый взгляд странным: ток в неразветвленной цепи
Рис. 302. Сопротивления в параллельных ветвях переменного тока различны по своей природе Таким образом, если сопротивления параллельных ветвей различны по своей природе, то ток в неразветвленной цепи меньше суммы токов в отдельных ветвях. Чтобы разобраться в этих явлениях, заменим в схемах на рис. 301 и 302 амперметры осциллографами и запишем форму кривой тока в каждой из параллельных ветвей. Оказывается, что токи разной природы в каждой из ветвей не совпадают по фазе ни друг с другом, ни с током в неразветвленной цепи. В частности, ток в цепи с активным сопротивлением опережает по фазе на четверть периода ток в цепи с емкостным сопротивлением и отстает по фазе на четверть периода от тока в цепи с индуктивным сопротивлением. В
этом случае кривые, изображающие форму тока в неразветвленной цепи и в
какой-нибудь из ветвей, расположены относительно друг друга так, как кривые 1 и
2 на рис. 294. В общем же случае, в зависимости от соотношения между активным и
емкостным (или индуктивным) сопротивлениями каждой из ветвей, сдвиг фаз между
током в этой ветви и неразветвленным током может иметь любое значение от нуля
до Это несовпадение фаз токов в параллельных ветвях с сопротивлениями, различными по своей природе, и является причиной тех явлений, о которых было сказано в начале этого параграфа. Действительно, для мгновенных значений токов, т. е. для тех значений, которые эти токи имеют в один и тот же момент времени, соблюдается известное правило:
Но для амплитуд (или действующих значений) этих токов это правило не соблюдается, потому что результат сложения двух синусоидальных токов или иных двух величин, изменяющихся по закону синуса, зависит от разности фаз между складываемыми величинами. В самом деле, предположим для простоты, что амплитуды складываемых токов одинаковы, а разность фаз между ними равна нулю. Тогда мгновенное значение суммы двух токов будет равно просто удвоенному значению мгновенного значения одного из складываемых токов, т. е. форма результирующего тока будет представлять собой синусоиду с тем же периодом и фазой, но с удвоенной амплитудой. Если амплитуды складываемых токов различны (рис. 303,а), то сумма их представляет собой синусоиду с амплитудой, равной сумме амплитуд складываемых токов. Это имеет место, когда разность фаз между складываемыми токами равна нулю, например когда сопротивления в обеих параллельных ветвях одинаковы по своей природе.
Рис. 303. Сложение двух
синусоидальных переменных токов. Складываемые токи: а) совпадают по фазе ( Рассмотрим
теперь другой крайний случай, когда складываемые токи, имея равные амплитуды,
противоположны по фазе, т. е. разность фаз между ними равна В
общем случае при сложении двух синусоидальных токов одной и той же частоты со
сдвигом фаз мы получаем всегда синусоидальный ток той же частоты с амплитудой,
которая в зависимости от разности фаз
|
1 |
Оглавление
|