Главная > Элементарный учебник физики Т2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока.

Включим в цепь переменного тока две параллельные ветви, содержащие активные сопротивления  и  и амперметры  и , измеряющие токи  и  в этих ветвях (рис. 301). Третий амперметр А измеряет ток в неразветвленной цепи. Положим сначала, что оба сопротивления  и  представляют собой лампочки накаливания или реостаты, индуктивным сопротивлением которых можно пренебречь по сравнению с их активным сопротивлением (рис. 301,а). Тогда, так же как и в случае постоянного тока, мы убедимся в том, что показание амперметра  равно сумме показаний амперметров  и , т. е. . Если сопротивления  и  представляют собой реостаты, то, изменяя их сопротивления, мы можем как угодно изменять каждый из токов  и , но равенство  всегда будет сохраняться. То же будет иметь место и в том случае, если мы заменим оба реостата конденсаторами, т. е. если оба сопротивления будут емкостными (рис. 301,б), или в том случае, если оба сопротивления являются индуктивными, т. е. реостаты заменены катушками с железным сердечником, индуктивное сопротивление которых настолько больше активного, что последним можно пренебречь (рис. 301,в).

385-1.jpg

Рис. 301. Сопротивления в параллельных ветвях цепи переменного тока одинаковы по своей природе

Таким образом, если сопротивления параллельных ветвей одинаковы по своей природе, то ток в неразветвленной цепи равен сумме токов в отдельных ветвях. Это справедливо, конечно, и в том случае, когда имеются не две ветви, а любое их число.

Заменим теперь в одной из ветвей (рис. 302,а и б) активное сопротивление емкостным (конденсатором) или индуктивным (катушкой с большой индуктивностью и малым активным сопротивлением). Опыт дает в этом случае результат, кажущийся на первый взгляд странным: ток в неразветвленной цепи  оказывается меньшим, чем сумма токов в обеих ветвях: . Если, например, ток в одной ветви равен 3 А, а в другой – 4 А, то амперметр в неразветвленной цепи покажет не ток 7 А, как мы ожидали бы, а только ток 5 А, или 3 А, или 2 А и т. д. Ток  будет меньше суммы токов  и  и тогда, когда сопротивление одной ветви емкостное, а другой – индуктивное (рис. 302,в).

385-2.jpg

Рис. 302. Сопротивления в параллельных ветвях переменного тока различны по своей природе

Таким образом, если сопротивления параллельных ветвей различны по своей природе, то ток в неразветвленной цепи меньше суммы токов в отдельных ветвях.

Чтобы разобраться в этих явлениях, заменим в схемах на рис. 301 и 302 амперметры осциллографами и запишем форму кривой тока в каждой из параллельных ветвей. Оказывается, что токи разной природы в каждой из ветвей не совпадают по фазе ни друг с другом, ни с током в неразветвленной цепи. В частности, ток в цепи с активным сопротивлением опережает по фазе на четверть периода ток в цепи с емкостным сопротивлением и отстает по фазе на четверть периода от тока в цепи с индуктивным сопротивлением.

В этом случае кривые, изображающие форму тока в неразветвленной цепи и в какой-нибудь из ветвей, расположены относительно друг друга так, как кривые 1 и 2 на рис. 294. В общем же случае, в зависимости от соотношения между активным и емкостным (или индуктивным) сопротивлениями каждой из ветвей, сдвиг фаз между током в этой ветви и неразветвленным током может иметь любое значение от нуля до . Следовательно, при смешанном сопротивлении разность фаз между токами в параллельных ветвях цепи может иметь любое значение между нулем и .

Это несовпадение фаз токов в параллельных ветвях с сопротивлениями, различными по своей природе, и является причиной тех явлений, о которых было сказано в начале этого параграфа. Действительно, для мгновенных значений токов, т. е. для тех значений, которые эти токи имеют в один и тот же момент времени, соблюдается известное правило:

.

Но для амплитуд (или действующих значений) этих токов это правило не соблюдается, потому что результат сложения двух синусоидальных токов или иных двух величин, изменяющихся по закону синуса, зависит от разности фаз между складываемыми величинами.

В самом деле, предположим для простоты, что амплитуды складываемых токов одинаковы, а разность фаз между ними равна нулю. Тогда мгновенное значение суммы двух токов будет равно просто удвоенному значению мгновенного значения одного из складываемых токов, т. е. форма результирующего тока будет представлять собой синусоиду с тем же периодом и фазой, но с удвоенной амплитудой. Если амплитуды складываемых токов различны (рис. 303,а), то сумма их представляет собой синусоиду с амплитудой, равной сумме амплитуд складываемых токов. Это имеет место, когда разность фаз между складываемыми токами равна нулю, например когда сопротивления в обеих параллельных ветвях одинаковы по своей природе.

387.jpg

Рис. 303. Сложение двух синусоидальных переменных токов. Складываемые токи: а) совпадают по фазе (); б) противоположны по фазе, т. е. сдвинуты во времени на половину периода (); в) сдвинуты во времени на четверть периода ()

Рассмотрим теперь другой крайний случай, когда складываемые токи, имея равные амплитуды, противоположны по фазе, т. е. разность фаз между ними равна . В этом случае мгновенные значения складываемых токов равны по модулю, но противоположны по направлению. Поэтому их алгебраическая сумма будет постоянно равна нулю. Таким образом, при сдвиге фаз на  между токами в обеих ветвях, несмотря на наличие токов в каждой из параллельных ветвей, в неразветвленной цепи тока не будет. Если амплитуды обоих смещенных на  токов различны, то мы получим результирующий ток с той же частотой, но с амплитудой, равной разности амплитуд складываемых токов; по фазе этот ток совпадает с током, имеющим большую амплитуду (рис. 303,б). Практически этот случай имеет место тогда, когда в одной из ветвей имеется емкостное, а в другой – индуктивное сопротивление.

В общем случае при сложении двух синусоидальных токов одной и той же частоты со сдвигом фаз мы получаем всегда синусоидальный ток той же частоты с амплитудой, которая в зависимости от разности фаз  имеет промежуточное значение между разностью амплитуд складываемых токов и их суммой. Для примера на рис. 303,в показано графическое сложение двух токов с разностью фаз . С помощью циркуля легко убедиться в том, что каждая ордината результирующей кривой  действительно представляет собой алгебраическую сумму ординат кривых  и  с одинаковой абсциссой, т. е. для того же момента времени.

 

1
Оглавление
email@scask.ru