Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 92. Несамостоятельная проводимость газа.Простейший опыт, иллюстрирующий возникновение несамостоятельной проводимости газов, может быть осуществлен с помощью установки, изображенной на рис. 147, которая показывает, что в обычных условиях газы не проводят тока: несмотря на приложенное напряжение, гальванометр в цепи показывает отсутствие тока.
Нагреем теперь газ в промежутке 1 до очень высокой температуры, внеся в него зажженную горелку (рис. 148,а). Гальванометр тотчас же укажет появление тока. Следовательно, при высокой температуре молекулы газа уже не являются незаряженными, а по крайней мере некоторая их доля распадается на положительные и отрицательные части, т. е. в газе появляются ионы. Процесс образования ионов в каком-либо газе называют ионизацией этого газа. В описанном опыте ионизация является следствием нагревания газа.
Рис. 148. а) Газ, ионизованный пламенем, проводит электричество. б) Если воздух, ионизованный пламенем, проходит до пластин небольшое расстояние, гальванометр показывает наличие тока, 1 – газовый промежуток, 2 – аккумуляторная батарея, 3 – гальванометр Если направить в газовый промежуток струю воздуха от маленькой воздуходувки и на пути струи, вне промежутка, поместить ионизующее пламя (рис. 148,б), то гальванометр показывает некоторый ток. Это значит, что ионы, возникшие в пламени, не исчезают мгновенно, а перемещаются вместе с газом. Однако при увеличении расстояния между пламенем и газовым промежутком ток постепенно ослабевает и при расположении пламени в нескольких сантиметрах практически исчезает вовсе. Это показывает, что после устранения причины, вызывающей ионизацию, число ионов в газе быстро уменьшается и через короткое время газ опять превращается в диэлектрик. Исчезновение ионов в газе объясняется тем, что разноименно заряженные ионы стремятся сблизиться под влиянием силы электрического притяжения и при встрече вновь воссоединяются в нейтральную молекулу. Такой процесс носит название рекомбинации ионов. Вследствие рекомбинации однажды созданная проводимость газа не сохраняется, а для получения длительного тока необходимо, чтобы в газе непрерывно происходила ионизация. Нагревание газа до высокой температуры не является единственным способом ионизации молекул или атомов газа. Нейтральные атомы или молекулы газа могут ионизоваться, т. е. приобретать электрический заряд, также и под воздействием ряда других факторов, важнейшим из которых является рентгеновское излучение. Обычно процесс ионизации состоит в отрыве от молекулы электрона, благодаря чему она становится положительным ионом. Освободившийся электрон сам становится свободным носителем отрицательного заряда. Однако во многих случаях электрон «прилипает» к какой-нибудь нейтральной молекуле, которая, таким образом, становится отрицательно заряженным ионом. Нередко и положительные и отрицательные ионы представляют собой не единичные ионизованные молекулы, а группы молекул, прилипших к отрицательному или положительному иону. Благодаря этому, хотя заряд каждого иона равен одному, двум, редко большему числу элементарных зарядов, массы их могут значительно отличаться от масс отдельных атомов или молекул; этим газовые ионы существенно отличаются от ионов электролитов, представляющих всегда, как мы видели, атомы или определенные группы атомов. В силу этого различия при ионной проводимости газов не имеют места законы Фарадея, столь характерные для проводимости электролитов. Второе,
также очень важное, отличие ионной проводимости газов от ионной проводимости
электролитов состоит в том, что для газов не соблюдается закон Ома. Измеряя
силу тока В
частности, в случае несамостоятельной проводимости, изображенном на рис. 148,
получается график, показанный на рис. 149. Только при небольших значениях
Рис. 149. Ток насыщения при несамостоятельной проводимости газа Нетрудно
понять смысл полученных результатов. Вначале с ростом напряжения увеличивается
число ионов, проходящих за единицу времени через сечение разряда, т. е.
увеличивается ток мы не будем иметь насыщения. Это и имеет место в электролите, где вследствие электролитической диссоциации (§71) скорость образования ионов чрезвычайно велика. Поэтому для электролитов мы всегда имеем лишь начальную часть кривой, изображенной на рис. 149, т. е. для них соблюдается закон Ома. Опыты показывают, однако, что если после достижения тока насыщения в газе продолжать значительно повышать напряжение, то ход вольтамперной характеристики, представленной на рис. 149, внезапно нарушается. При достаточно большом напряжении ток резко возрастает (рис. 150).
Рис. 150. Вольтамперная характеристика при переходе от несамостоятельного разряда к самостоятельному Скачок тока показывает, что число ионов сразу резко возросло. Причиной этого является само электрическое поле: оно сообщает некоторым ионам столь большие скорости, т. е. столь большую энергию, что при соударениях таких ионов с нейтральными молекулами последние разбиваются на ионы. Общее число ионов теперь определяется не ионизующим фактором, а действием самого поля, которое может само поддерживать необходимую ионизацию: проводимость из несамостоятельной становится самостоятельной. Описанное явление внезапного возникновения самостоятельной проводимости, имеющее характер пробоя газового промежутка, – не единственная, хотя и весьма важная, форма возникновения самостоятельной проводимости. К описанию различных случаев самостоятельной проводимости газов мы сейчас и перейдем.
|
1 |
Оглавление
|