Главная > Элементарный учебник физики Т2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава XV. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

§ 138. Условия возникновения индукционного тока.

Напомним некоторые простейшие опыты, в которых наблюдается возникновение электрического тока в результате электромагнитной индукции.

Один из таких опытов изображен на рис. 253. Если катушку, состоящую из большого числа витков проволоки, быстро надевать на магнит или сдергивать с него (рис. 253,а), то в ней возникает кратковременный индукционный ток, который можно обнаружить по отбросу стрелки гальванометра, соединенного с концами катушки. То же имеет место, если магнит быстро вдвигать в катушку или выдергивать из нее (рис. 253,б). Значение имеет, очевидно, только относительное движение катушки и магнитного поля. Ток прекращается, когда прекращается это движение.

321.jpg

Рис. 253. При относительном перемещении катушки и магнита в катушке возникает индукционный ток: а) катушка надевается на магнит; б) магнит вдвигается в катушку

Рассмотрим теперь несколько дополнительных опытов, которые позволят нам в более общем виде сформулировать условия возникновения индукционного тока.

Первая серия опытов: изменение магнитной индукции поля, в котором находится индукционный контур (катушка или рамка).

Катушка помещена в магнитное поле, например внутрь соленоида (рис. 254,а) или между полюсами электромагнита (рис. 254,б). Установим катушку так, чтобы плоскость ее витков была перпендикулярна к линиям магнитного поля соленоида или электромагнита. Будем изменять магнитную индукцию поля, быстро изменяя силу тока в обмотке (с помощью реостата) или просто выключая и включая ток (ключом). При каждом изменении магнитного поля стрелка гальванометра дает резкий отброс; это указывает на возникновение в цепи катушки индукционного электрического тока. При усилении (или возникновении) магнитного поля возникнет ток одного направления, при его ослаблении (или исчезновении) – обратного. Проделаем теперь тот же опыт, установив катушку так, чтобы плоскость ее витков была параллельна направлению линий магнитного поля (рис. 255). Опыт даст отрицательный результат: как бы мы ни изменяли магнитную индукцию поля, мы не обнаружим в цепи катушки индукционного тока.

322-1.jpg

Рис. 254. В катушке возникает индукционный ток при изменении магнитной индукции, если плоскость ее витков перпендикулярна к линиям магнитного поля: а) катушка в поле соленоида; б) катушка в поле электромагнита. Магнитная индукция изменяется при замыкании и размыкании ключа или при изменении силы тока в цепи

322-2.jpg

Рис. 255. Индукционный ток не возникает, если плоскость витков катушки параллельна линиям магнитного поля

Вторая серия опытов: изменение положения катушки, находящейся в неизменном магнитном поле.

Поместим катушку внутрь соленоида, где магнитное поле однородно, и будем быстро поворачивать ее на некоторый угол вокруг оси, перпендикулярной к направлению поля (рис. 256). При всяком таком повороте гальванометр, соединенный с катушкой, обнаруживает индукционный ток, направление которого зависит от начального положения катушки и от направления вращения. При полном обороте катушки на 360° направление индукционного тока изменяется дважды: всякий раз, когда катушка проходит положение, при котором плоскость ее перпендикулярна к направлению магнитного поля. Конечно, если вращать катушку очень быстро, то индукционный ток будет так часто изменять свое направление, что стрелка обычного гальванометра не будет успевать следовать за этими переменами и понадобится иной, более «послушный» прибор.

322-3.jpg

Рис. 256. При вращении катушки в магнитном поле в ней возникает индукционный ток

Если, однако, перемещать катушку так, чтобы она не поворачивалась относительно направления поля, а лишь перемещалась параллельно самой себе в любом направлении вдоль поля, поперек его или под каким-либо углом к направлению поля, то индукционный ток возникать не будет. Подчеркнем еще раз: опыт по перемещению катушки проводится в однородном поле (например, внутри длинного соленоида или в магнитном поле Земли). Если поле неоднородно (например, вблизи полюса магнита или электромагнита), то всякое перемещение катушки может сопровождаться появлением индукционного тока, за исключением одного случая: индукционный ток не возникает, если катушка движется так, что плоскость ее все время остается параллельной направлению поля (т. е. сквозь катушку не проходят линии магнитного поля).

Третья серия опытов: изменение площади контура, находящегося в неизменном магнитном поле.

Подобный опыт можно осуществить по следующей схеме (рис. 257). В магнитном поле, например между полюсами большого электромагнита, поместим контур, сделанный из гибкого провода. Пусть первоначально контур имел форму окружности (рис. 257,а). Быстрым движением руки можно стянуть контур в узкую петлю, значительно уменьшив таким образом охватываемую им площадь (рис. 257,б). Гальванометр покажет при этом возникновение индукционного тока.

323.jpg

Рис. 257. В катушке возникает индукционный ток, если изменяется площадь ее контура, находящегося в неизменном магнитном поле и расположенного перпендикулярно к линиям магнитного поля (магнитное поле направлено от наблюдателя)

Еще удобнее осуществление опыта с изменением площади контура по схеме, изображенной на рис. 258. В магнитном поле расположен контур , одна из сторон которого ( на рис. 258) сделана подвижной. При каждом ее передвижении гальванометр обнаруживает возникновение в контуре индукционного тока. При этом при передвижении  влево (увеличение площади ) индукционный ток имеет одно направление, а при передвижении  вправо (уменьшение площади ) – противоположное. Однако и в этом случае изменение площади контура не дает никакого индукционного тока, если плоскость контура параллельна направлению магнитного поля.

324.jpg

Рис. 258. При движении стержня  и изменении вследствие этого площади контура , находящегося в магнитном поле , в контуре возникает ток.

Сопоставляя все описанные опыты, мы можем сформулировать условия возникновения индукционного тока в общей форме. Во всех рассмотренных случаях мы имели контур, помещенный в магнитное поле, причем плоскость контура могла составлять тот или иной угол с направлением магнитной индукции. Обозначим площадь, ограниченную контуром, через , магнитную индукцию поля через , а угол между направлением магнитной индукции и плоскостью контура через . В таком случае составляющая магнитной индукции, перпендикулярная к плоскости контура, будет равна по модулю (рис. 259)

.

325.jpg

Рис. 259. Разложение магнитной индукции  на составляющую , перпендикулярную к плоскости индукционного контура, и составляющую , параллельную этой плоскости

Произведение  мы будем называть потоком магнитной индукции или, короче, магнитным потоком через контур; эту величину мы будем обозначать буквой . Таким образом,

.              (138.1)

Во всех без исключения рассмотренных случаях мы тем или иным способом изменяли магнитный поток . В одних случаях мы осуществляли это путем изменения, магнитной индукции  (рис. 254); в других случаях изменялся угол  (рис. 256); в третьих – площадь  (рис. 257). В общем случае, конечно, возможно одновременное изменение всех этих величин, определяющих магнитный поток через контур. Внимательное рассмотрение самых разнообразных индукционных опытов показывает, что индукционный ток возникает тогда и только тогда, когда изменяется магнитный поток ; индукционный ток никогда не возникает, если магнитный поток  через данный контур остается неизменным. Итак:

При всяком изменении магнитного потока через проводящий контур в этом контуре возникает электрический ток.

В этом и заключается один из важнейших законов природы – закон электромагнитной индукции, открытый Фарадеем в 1831 г.

138.1. Катушки I и II находятся одна внутри другой (рис. 260). В цепь первой включена батарея, в цепь второй – гальванометр. Если в первую катушку вдвигать или выдвигать из нее железный стержень, то гальванометр обнаружит возникновение во второй катушке индукционного тока. Объясните этот опыт.

326.jpg

Рис. 260. К упражнению 138.1

138.2. Проволочная рамка вращается в однородном магнитном поле вокруг оси, параллельной магнитной индукции. Будет ли в ней возникать индукционный ток?

138.3. Возникает ли э. д. с. индукции на концах стальной оси автомобиля при его движении? При каком направлении движения автомобиля эта э. д. с. наибольшая и при каком наименьшая? Зависит ли э. д. с. индукции от скорости автомобиля?

138.4. Шасси автомобиля вместе с двумя осями составляет замкнутый проводящий контур. Индуцируется ли в нем ток при движении автомобиля? Как согласовать ответ этой задачи с результатами задачи 138.3?

138.5. Почему при ударе молнии иногда в нескольких метрах от места удара обнаруживались повреждения чувствительных электроизмерительных приборов, а также плавились предохранители в осветительной сети?

 

1
Оглавление
email@scask.ru