Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
14.08. Опорное напряжение землиДля питания большинства из рассмотренных с гл. 3 схем на операционных усилителях обычно используются источники с симметричным напряжением 15 В, что связано с гибкостью обработки сигналов, близких к потенциалу земли. Однако, как мы уже установили в разд. 4.22, можно использовать только единственный источник питания, формируя некоторое опорное напряжение, которое подается вместо потенциала земли обычных биполярных источников питания схем на ОУ. Если же в качестве источника питания используется батарея, то появляется дополнительный стимул упрощения ситуации, когда предпочтительнее использовать единственную батарею с напряжением 9 В. Наиболее легкий способ формирования аналоговой «общей» шины состоит в том, чтобы расщепить напряжение батареи с помощью резистивного делителя напряжения, а затем использовать микромощный повторитель на ОУ, который обеспечит низкое полное сопротивление этой общей шины. Для внешнего мира эта общая шина представляет собой «землю» с плавающими обоими концами самой батареи, см. рис. 14.8. Для поясняющей эту идею схемы мы выбрали программируемый КМОП операционный усилитель 3440, работающий при токе покоя Следует отметить, что само опорное напряжение не обязательно должно составлять половину напряжения батареи; может быть лучше расщепить напряжение питания несимметрично, с тем чтобы обеспечивался максимальный размах выходного сигнала. (Пример этого приводится в разд. 14.12.) В некоторых ситуациях может быть предпочтительнее сместить его на фиксированное значение от напряжения питания, возможно с помощью прецизионного микромощного источника эталонного напряжения. Тогда само напряжение питания относительно опорного напряжения общей шины будет стабилизированным. Выходное полное сопротивление.Существует несколько ситуаций, в которых вам даже не требуется устанавливать ОУ для формирования опорного напряжения земли. Например, если это опорное напряжение подается только на входы ОУ (которые были бы подключены к шине земли в обычной конфигурации с биполярным источником питания), то в этом случае шунтированный высокоомный резистивный делитель, обеспечивающий низкое полное сопротивление в частотном диапазоне сигнала, будет обычно удовлетворительным решением.Однако, как правило, источник, формирующий потенциал шины земли, должен характеризоваться низким полным сопротивлением, как на постоянном токе, так и на частотах сигнала. Например, некоторые ИС могут использовать общую шину в качестве источника отрицательного напряжения питания; она может использоваться как общая точка подключения фильтров нижних частот, цепей смещения, нагрузок и др. Взгляните на любую нормальную схему с биполярным источником питания и вы найдете постоянные и сигнальные токи как втекающие в шину земли, так и вытекающие из нее. Как и в приведенном выше примере, надо быть уверенным в том, что ОУ, который вы выбрали для формирования опорного напряжения земли, обладает надлежащими характеристиками по формированию втекающего и вытекающего тока, как того требует сама схема. Для микромощных операционных усилителей характерно высокое выходное полное сопротивление при разомкнутой петле обратной связи (рис. 7.16), так что на высоких частотах (где отсутствует значительное петлевое усиление) полное сопротивление шины земли может возрастать до нескольких тысяч ом. Очевидное средство избавиться от этого - шунтирование опорного напряжения земли (рис. 14.25, а), но это, вероятно, вызовет переходные процессы в виде «звона» или даже генерацию из-за запаздывающего фазового сдвига цепи, состоящей из самого шунтирующего конденсатора в сочетании с относительно высоким выходным полным сопротивлением операционного усилителя, которая входит в петлю обратной связи. На рис. 14.25, б показано еще одно средство, а именно развязывающий резистор в несколько сотен ом, который, однако, приводит к увеличению сопротивления на постоянном токе, поскольку он не входит в петлю обратной связи. Добавив еще два элемента, как на рис. Какой бы из методов вы не выбрали, будьте уверены в нем, а для этого проведите испытания при различных условиях по нагрузке, т. е. для установившегося и переходного режима.
Рис. 14.25. Шунтированные формирователи расщепленного напряжения питания. Хороший способ испытания поведения в переходном режиме - это наблюдение формы напряжения при прикладывании нагрузки, величина которой изменяется низкочастотным «прямоугольным» образом. Некоторые ОУ (например,
Рис.. Следует отметить, что при выборе номинала шунтирующего конденсатора нужно учитывать некоторые тонкие моменты: для наведенных всплесков фиксированной инжекции заряда в узел опорного напряжения земли (т. е. фиксированное произведение ампер-секунда) большему номиналу шунтирующего конденсатора будет соответствовать переходной шумовой процесс в шине земли меньшего уровня, но с большим временем восстановления, чем при небольшом конденсаторе (рис. 14.26). Для низкоскоростной схемы с высоким коэффициентом передачи такое медленное экспоненциальное восстановление может быть хуже, чем появление в выходном сигнале безвредных маленьких пичков.
Рис. 14.27. Буфферные источники эталонного напряжения. При проектировании схем формирования опорного напряжения земли нельзя не рассмотреть выходы источников эталонного напряжения, которые иногда присутствуют в других интегральных схемах. Например, таймер На рис. 14.27 показаны некоторые схемы буферных источников эталонного напряжения.
|
1 |
Оглавление
|