Главная > Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА 5. ОПРЕДЕЛЕННЫЕ ИНТЕГРАЛЫ

5.1. Классификация методов

Ставится задача вычислить интеграл вида

где нижний и верхний пределы интегрирования; непрерывная функция на отрезке

К численному интегрированию обращаются, когда нельзя через элементарные функции аналитически записать первообразную интеграла (5.1) или когда подобная запись имеет сложный вид.

Сущность большинства методов вычисления определенных интегралов состоит в замене подынтегральной функции аппроксимирующей функцией для которой можно легко записать первообразную в элементарных функциях, т. е.

где приближенное значение интеграла; погрешность вычисления интеграла.

Используемые на практике методы численного интегрирования можно сгруппировать в зависимости от способа аппроксимации подынтегральной функции. Дадим краткую характеристику групп наиболее распространенных методов.

Методы Ньютона-Котеса основаны на полиномиальной аппроксимации подынтегральной функции. Методы этого класса отличаются друг от друга степенью используемого полинома, от которой зависит количество узлов, где необходимо вычислить функцию Алгоритмы методов просты и легко поддаются программной реализации.

Сплайновые методы базируются на аппроксимации подынтегральной функции сплайнами, представляющими собой кусочный полином. Методы различаются по типу выбранных сплайнов. Такие методы имеет смысл использовать в задачах, где алгоритмы сплайновой аппроксимации применяются для обработки данных.

В методах наивысшей алгебраической точности (методы Гаусса-Кристоффеля и другие) используют неравноотстоящие узлы, расположенные по алгоритму, обеспечивающему минимальную погрешность интегрирования для наиболее сложных функций при заданном количестве узлов. Методы различаются способами выбора узлов и широко используются для интегрирования, в том числе они применимы и для несобственных интегралов. Хотя из-за необходимости хранения числовых констант и стандартизации пределов интегрирования программы указанных методов требуют несколько большего объема памяти по сравнению с методами Ньютона-Котеса

В методах Монте-Карло узлы выбираются с помощью датчика случайных чисел, ответ носит вероятностный характер. Методы оказываются эффективными при вычислении большой кратности.

В класс специальных группируются методы, алгоритмы которых разрабатываются на основе учета особенностей конкретных подынтегральных функций, что позволяет существенно сократить время и уменьшить погрешность вычисления интегралов.

Рис. 5.1. Зависимость полной погрешности Я от количества разбиений интервала интегрирования

Независимо от выбранного метода в процессе численного интегрирования необходимо вычислить приближенное значение интеграла (5.1) и оценить погрешность Погрешность будет уменьшаться при увеличении количества разбиений интервала интегрирования за счет более точной аппроксимации подынтегральной функции, однако при этом будет возрастать погрешность за счет суммирования частичных интегралов, и последняя погрешность с некоторого значения становится преобладающей (рис. 5.1) [20]. Это обстоятельство должно предостеречь от выбора чрезмерно большого числа и привести к необходимости разработки способа оценки погрешности выбранного метода интегрирования.

1
Оглавление
email@scask.ru