ГЛАВА 5. ОПРЕДЕЛЕННЫЕ ИНТЕГРАЛЫ
5.1. Классификация методов
Ставится задача вычислить интеграл вида
где нижний и верхний пределы интегрирования; непрерывная функция на отрезке
К численному интегрированию обращаются, когда нельзя через элементарные функции аналитически записать первообразную интеграла (5.1) или когда подобная запись имеет сложный вид.
Сущность большинства методов вычисления определенных интегралов состоит в замене подынтегральной функции аппроксимирующей функцией для которой можно легко записать первообразную в элементарных функциях, т. е.
где приближенное значение интеграла; погрешность вычисления интеграла.
Используемые на практике методы численного интегрирования можно сгруппировать в зависимости от способа аппроксимации подынтегральной функции. Дадим краткую характеристику групп наиболее распространенных методов.
Методы Ньютона-Котеса основаны на полиномиальной аппроксимации подынтегральной функции. Методы этого класса отличаются друг от друга степенью используемого полинома, от которой зависит количество узлов, где необходимо вычислить функцию Алгоритмы методов просты и легко поддаются программной реализации.
Сплайновые методы базируются на аппроксимации подынтегральной функции сплайнами, представляющими собой кусочный полином. Методы различаются по типу выбранных сплайнов. Такие методы имеет смысл использовать в задачах, где алгоритмы сплайновой аппроксимации применяются для обработки данных.
В методах наивысшей алгебраической точности (методы Гаусса-Кристоффеля и другие) используют неравноотстоящие узлы, расположенные по алгоритму, обеспечивающему минимальную погрешность интегрирования для наиболее сложных функций при заданном количестве узлов. Методы различаются способами выбора узлов и широко используются для интегрирования, в том числе они применимы и для несобственных интегралов. Хотя из-за необходимости хранения числовых констант и стандартизации пределов интегрирования программы указанных методов требуют несколько большего объема памяти по сравнению с методами Ньютона-Котеса
В методах Монте-Карло узлы выбираются с помощью датчика случайных чисел, ответ носит вероятностный характер. Методы оказываются эффективными при вычислении большой кратности.
В класс специальных группируются методы, алгоритмы которых разрабатываются на основе учета особенностей конкретных подынтегральных функций, что позволяет существенно сократить время и уменьшить погрешность вычисления интегралов.
Рис. 5.1. Зависимость полной погрешности Я от количества разбиений интервала интегрирования