Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА II. ВАЖНЕЙШИЕ СВОЙСТВА ЦИКЛОИДЫ«На второе был подан пирог в форме циклоиды ..» Дж. Свифт Путешествия Гулливера Касательная и нормаль к циклоидеНаиболее естественным определением окружности будет, пожалуй, следующее: «окружностью называется путь частицы твердого тела, вращающегося вокруг неподвижной оси». Это определение наглядно, из него легко вывести все свойства окружности, а главное, оно сразу рисует нам окружность, как непрерывную кривую, чего вовсе не видно из классического определения окружности, как геометрического места точек плоскости, равноудаленных от одной точки. Почему же в школе мы определяем окружность, к? к геометрическое место точек? Чем плохо определение окружности с помощью движения (вращения)? Подумаем об этом. Когда мы изучаем механику, мы не занимаемся доказательством геометрических теорем: мы считаем, что уже знаем их — мы просто ссылаемся на геометрию, как на нечто уже известное. Если и при доказательстве геометрических теорем мы будем ссылаться на механику, как на нечто уже известное, то сделаем ошибку, которая называется «логический (порочный) круг»: при доказательстве предложения Определение циклоиды, с которым мы успели познакомиться, никогда не удовлетворяло ученых: ведь оно опирается на механические понятия — скорости, сложения движений и т. д. Поэтому геометры всегда стремились дать циклоиде чисто геометрическое определение. Но для того, чтобы дать такое определение, нужно прежде всего изучить основные свойства циклоиды, пользуясь ее механическим определением. Выбрав наиболее простое и характерное из этих свойств, можно положить его в основ) геометрического определения. Начнем с изучения касательной и нормали к циклоиде. Что такое касательная к кривой линии, каждый представляет себе достаточно ясно; точно определение касательной дается в курсах высшей математики, и мы его приводить здесь не будем.
Рис. 16. Касательная и нормаль к кривой. Нормалью называется перпендикуляр к касательной, восставленный в точке касания. На рис. 16 изображена касательная и нормаль к кривой АВ в ее точке Допустим, что вертикальный радиус круга, проходивший в начальный момент через нижнюю точку циклоиды, успел повернуться на угол
Рис. 17. Касательная к циклоиде. Точка М и есть интересующая нас точка циклоиды. Стрелочка ОН изображает скорость движения центра катящегося круга. Такой же горизонтальной скоростью обладают все точки круга, в том числе и точка М. Но, кроме того, точка М принимает участие во вращении круга. Скорость МС, которую точка М на окружности получает при этом вращении, направлена по касательной Теперь мы можем ответить на вопрос, поставленный в конце беседы Сергея и Васи (стр. 7). Комок грязи, оторвавшийся от велосипедного колеса, движется по касательной к траектории той частицы колеса, от которой он отделился. Но траекторией будет не окружность, а циклоида, потому что колесо не просто вращается, а катится, т. е. совершает движение, состоящее из поступательного движения и вращения. Все сказанное дает возможность решить следующую «задачу на построение»: дана направляющая прямая АВ циклоиды, радиус Требуется построить касательную МК к циклоиде. Имея точку М, мы без труда строим производящий круг, в том его положении, когда точка на окружности попадает в М, Для этого предварительно найдем центр О при помощи радиуса Это построение — чисто геометрическое, хотя получили мы его, используя понятия механики. Теперь мы можем проститься с механикой и дальнейшие следствия получать без ее помощи. Начнем с простой теоремы. Теорема 1. Угол между касательной к циклоиде (в произвольной точке) и направляющей прямой равен дополнению до 90° половины угла поворота радиуса производящего круга. Иными словами, на нашем рис. 17 угол KLT равен Рассмотрим угол СМР. Сторона СМ перпендикулярна к ОМ (касательная к окружности перпендикулярна к радиусу). Сторона МР (горизонталь) перпендикулярна к ОТ (к вертикали). Но угол МОТ, по условию, острый (мы условились рассматривать первую четверть оборота), а угол СМР — тупой (почему?). Значит, углы МОТ и СМР составляют в сумме 180° (углы со взаимно перпендикулярными сторонами, из которых один острый, а другой — тупой). Итак, угол СМР равен Следовательно, угол Обратим теперь внимание на нормаль к циклоиде. Мы говорили уже, что нормалью к кривой называется перпендикуляр к касательной, проведенный в точке касания (рис. 16). Изобразим левую часть рис. 17 крупнее, причем проведем нормаль Из рис. 18 следует, что угол ЕМР равен разности углов КМЕ и КМР, т. е. равен 90° — к. КМР.
Рис. 18. К теореме 2. Но мы только что доказали, что сам угол КМР равен
Мы доказали простую, но полезную теорему. Дадим ее формулировку: Теорема 2. Угол между нормалью к циклоиде (в любой ее точке) и направляющей прямой равен половине «основного угла». (Вспомним, что «основным углом» называется угол поворота радиуса катящегося круга) Соединим теперь точку М («текущую» точку циклоиды) с «нижней» точкой (Т) производящего круга (с точкой касания производящего круга и направляющей прямой — см. рис. 18). Треугольник МОТ, очевидно, равнобедренный (ОМ и ОТ — радиусы производящего круга). Сумма углов при основании этого треугольника равна
Обратим внимание на угол РМТ. Он равен разности углов ОМТ и ОМР. Мы видели сейчас, что
Рис. 19. Основные свойства касательной и нормали к циклоиде. Непосредственно очевидно, что
Получается замечательный результат: угол РМТ оказывается равным углу РМЕ (см. теорему 2). Следовательно, прямые ME и МТ сольются! Наш рис. 18 сделан не совсем правильно! Правильное расположение линий дано на рис. 19. Как же сформулировать полученный результат? Мы сформулируем его в виде теоремы 3. Теорема 3 (первое основное свойство циклоиды). Нормаль к циклоиде проходит через «нижнюю» точку производящего круга. Из этой теоремы получается простое следствие. Угол между касательной и нормалью, по определению, — прямой. Это угол, вписанный в окружность Поэтому он должен опираться на диаметр круга. Итак, Следствие (второе основное свойство циклоиды). Касательная к циклоиде проходит через «верхнюю» точку производящего круга. Воспроизведем теперь построение циклоиды по точкам, как мы это делали на рис. 6.
Рис. 20. Циклоида — огибающая своих касательных. На рис. 20 основание циклоиды разделено на 6 равных частей; чем число делений будет больше, тем, как мы знаем, чертеж получится точнее. В каждой точке циклоиды, построенной нами, проведем касательную, соединяя точку кривой с «верхней» точкой производящего круга. На нашем чертеже получилось семь касательных (из них две — вертикальные). Проводя теперь циклоиду от руки, будем заботиться, чтобы она действительно касалась каждой из этих касательных: это значительно увеличит точность чертежа. При этом сама циклоида будет огибать все эти касательные Проведем на том же рис. 20 нормали во всех найденных точках циклоиды. Всего будет, не считая направляющей, пять нормалей. Можно построить от руки сгибающую этих нормалей. Если бы мы вместо шести взяли 12 или 16 точек деления, то нормалей на чертеже было бы больше, и огибающая наметилась бы ясней. Такая огибающая всех нормалей играет важную роль при изучении свойств любой кривой линии. В случае циклоиды обнаруживается любопытный факт: огибающей нормалей циклоиды служит точно такая же циклоида, только сдвинутая на 2а вниз и на на вправо. С этим любопытным результатом, характерным именно для циклоиды, нам еще придется иметь дело. Свойства касательной и нормали к циклоиде были впервые изложены Торичелли (1608—1647) в его книге «Геометрические работы» (1644 год). Торичелли использовал при этом сложение движений. Несколько позже, но полнее, разобрал эти вопросы Роберваль (псевдоним французского математика Жилля Персонна, 1602—1672). Свойства касательной к циклоиде изучал также Декарт; он изложил свои результаты, не прибегая к помощи механики.
|
1 |
Оглавление
|