Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА VII. Существование трансцендентных чиселСуществуют ли траксдендентные числа? В настоящей заключительной главе мы дадим ответ на этот вопрос. Легко указать трансцендентное число. Совсем иное дело доказать его трансцендентность. То число а, трансцендентность которого мы установим, имеет следующую важную особенность: его десятичное разложение в основном состоит из нулей. Оно равно
где единицы стоят на местах с номерами
т. е. на местах с номерами
Символ
Все цифры в десятичном разложении числа а, за исключением тех, номера которых выражаются факториалами целых чисел, равны нулю. Следовательно, а можно записать в виде следующей суммы отрицательных степеней 10:
Указанное число а называется числом Лиувилля, по имени французского математика, впервые доказавшего существование трансцендентных чисел. Какое конкретное свойство числа а можно использовать для доказательства того, что оно не является алгебраическим? Таким свойством является следующее: а можно приблизить бесконечно большим количеством рациональных чисел Решена она была в 1955 г. английским матема: тиком К. Ф. Ротом, который в 1958 г. на Международном конгрессе математиков в Эдинбурге (Шотландия) был награжден за эту блестящую работу медалью Филдса. Его результат получил название теоремы Туэ — Зигеля — Рота, поскольку А. Туэ и С. Л. Зигелем были установлены некоторые факты, послужившие основой для работы Рота. Как уже было отмечено, доказать трансцендентность числа а гораздо труднее, чем просто выписать его десятичное представление. Ниже будет использован материал § 1 гл. VI, посвященного свойствам неравенств. Нам потребуется также понятие абсолютной величины числа, с которым читатель, возможно, уже знаком. Тем не менее, рассчитывая и на читателя, для которого это понятие является новым, мы определим абсолютную величину числа и докажем некоторые ее свойства. В порядке предварительной подготовки мы докажем также теорему о делимости многочлена на двучлен.
|
1 |
Оглавление
|