Главная > Курс общей физики, Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 50. Поле соленоида и тороида

Соленоид представляет собой провод, навитый на круглый цилиндрический каркас. Линии В поля соленоида выглядят примерно так, как показано на рис. 50.1. Внутри соленоида направление этих линий образует с направлением тока в витках правовинтовую систему.

У реального соленоида имеется составляющая тока вдоль оси. Кроме того, линейная плотность тока (равная отношению силы тока к элементу длины соленоида ) изменяется периодически при перемещении вдоль соленоида. Среднее значение этой плотности равно

где — число витков соленоида, приходящееся на единицу его длины, I — сила тока в соленоиде.

В учении об электромагнетизме большую роль играет воображаемый бесконечно длинный соленоид, у которого отсутствует осевая составляющая тока и, кроме того, линейная плотность тока постоянна по всей длине. Причина этого заключается в том, что поле такого соленоида однородно и ограничено объемом соленоида (аналогично электрическое поле бесконечного плоского конденсатора однородно и ограничено объемом конденсатора).

В соответствии со сказанным представим соленоид в виде бесконечного тонкостенного цилиндра, обтекаемого током постоянной линейной плотности

Разобьем цилиндр на одинаковые круговые токи — «витки».

Рис. 50.1.

Рис. 50.2.

Из рис. 50.2 видно, что каждая пара витков, расположенных симметрично относительно некоторой плоскости, перпендикулярной к оси соленоида, создает в любой точке этой плоскости магнитную индукцию, параллельную оси. Следовательно, и результирующее поле в любой точке внутри и вне бесконечного соленоида может иметь лишь направление, параллельное оси.

Из рис. 50.1 вытекает, что направления поля внутри и вне конечного соленоида противоположны. При увеличении длины соленоида направления полей не изменяются и в пределе при остаются противоположными. Для бесконечного соленоида, как и для конечного, направление поля внутри соленоида образует с направлением обтекания цилиндра током правовинтовую систему.

Из параллельности вектора В оси вытекает, что поле как внутри, так и вне бесконечного соленоида должно быть однородным. Чтобы доказать это, возьмем внутри соленоида воображаемый прямоугольный контур 1—2—3—4 (рис. 50.3; участок идет по оси соленоида). Обойдя контур по часовой стрелке, получим для циркуляции вектора В значение Контур не охватывает токов, поэтому циркуляция должна быть равна нулю (см. (49.7)).

Отсюда следует, что Располагая участок контура 2—3 на любом расстоянии от оси, мы каждый раз будем получать, что магнитная индукция на этом расстоянии равна индукции на оси соленоида. Таким образом, однородность поля внутри соленоида доказана.

Теперь обратимся к контуру 1—2—3—4. Мы изобразили векторы штриховой линией, поскольку, как выяснится в дальнейшем, поле вне бесконечного соленоида равно нулю. Пока же мы знаем лишь, что возможное направление поля вне соленоида противоположно направлению поля внутри соленоида. Контур не охватывает токов; поэтому циркуляция вектора В по этому контуру, равная а, должна быть равна нулю.

Рис. 50.3.

Рис. 50.4.

Отсюда вытекает, что . Расстояния от оси соленоида до участков 1—4 и 2—3 были взяты произвольно. Следовательно, значение В на любом расстоянии от оси будет вне соленоида одно и то же. Таким образом, оказывается доказанной и однородность поля вне соленоида.

Циркуляция по контуру, изображенному на рис. 50.4, равна (для обхода по часовой стрелке). Этот контур охватывает положительный ток величины . В соответствии с (49.7) должно выполняться равенство

или после сокращения на а и замены на (см. )

Из этого равенства следует, что поле как внутри, так и снаружи бесконечного соленоида является конечным.

Возьмем плоскость, перпендикулярную к оси соленоида (рис. 50.5). Вследствие замкнутости линий В магнитные потоки, через внутреннюю часть 5 этой плоскости и через внешнюю часть S должны быть одинаковыми.

Поскольку поля однородны и перпендикулярны к плоскости, каждый из потоков равен произведению соответствующего значения магнитной индукции и площади, пронизываемой потоком. Таким образом, получается соотношение

Левая часть этого равенства конечна, множитель S в правой части бесконечно большой. Отсюда следует, что

Итак, мы доказали, что вне бесконечно длинного соленоида магнитная индукция равна нулю. Внутри соленоида поле однородно.

Рис. 50.5.

Рис. 50.6.

Положив в (50.3) , придем к формуле для магнитной индукции внутри соленоида:

Произведение называется числом ампер-витков на метр. При витков на метр и силе тока в 1 А магнитная индукция внутри соленоида составляет .

В магнитную индукцию на оси соленоида симметрично расположенные витки вносят одинаковый вклад (см. формулу (47.4)). Поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине значения (50.4):

Практически, если длина соленоида значительно больше, чем его диаметр, формула (50.4) будет справедлива для точек в средней части соленоида, а формула (50.5) — для точек на оси вблизи его концов.

Тороид представляет собой провод, навитый на каркас, имеющий форму тора (рис. 50.6). Возьмем контур в виде окружности радиуса , центр которой совпадает с центром тороида.

В силу симметрии вектор В в каждой точке должен быть направлен по касательной к контуру. Следовательно, циркуляция В равна

(В — магнитная индукция в тех точках, где проходит контур).

Если контур проходит внутри тороида, он охватывает ток — радиус тороида, — число витков на единицу его длины). В этом случае

откуда

Контур, проходящий вне тороида, токов не охватывает, поэтому для него Таким образом, вне тороида магнитная индукция равна нулю.

Для тороида, радиус которого R значительно превосходит радиус витка, отношение для всех точек внутри тороида мало отличается от единицы и вместо (50.6) получается формула, совпадающая с формулой (50.4) для бесконечно длинного соленоида. В этом случае поле можно считать однородным в каждом из сечений тороида. В разных сечениях поле имеет различное направление, поэтому говорить об однородности поля в пределах его тороида можно только условно, имея в виду одинаковость модуля В.

У реального тороида имеется составляющая тока вдоль оси. Эта составляющая создает в дополнение к полю (50.6) поле, аналогичное полю кругового тока.

1
Оглавление
email@scask.ru