Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
10.11. Прерывания в целомНаш пример с клавиатурой демонстрирует суть прерываний, которые являются внезапными аппаратно вырабатываемыми запросами от периферийных устройств, вызывающими программную передачу управления специализированной программе обработки прерывания (которая обычно выполняет программноуправляемый ввод-вывод), а затем возврат управления в ту часть программы, выполнение которой было прервано. Другим примером устройств, использующих прерывания, являются часы реального времени, в которых периодически (часто 10 раз в секунду, но в ПЭВМ типа IBM PC 18,2 раза в секунду) вырабатываемое прерывание «подталкивает» подпрограмму определения текущего времени; еще одним примером является параллельный интерфейс печатающего устройства, который вырабатывает прерывания всякий раз, когда готов новый символ. Используя прерывания, такие периферийные устройства позволяют компьютеру одновременно выполнять другие задания; вот почему вы можете работать с текстовым редактором, пока ваша ПЭВМ печатает файл (и при этом еще и отсчитывает текущее время). , однако, не иллюстрирует всех возможностей прерываний. Как мы видели, имеются 6 линий IRQ на магистрали, каждая из которых может быть задействована только одним устройством, использующим прерывания. Линии IRQ пронумерованы в соответствии с приоритетом; в том случае, когда вырабатываются несколько прерываний, первым отрабатывается то, номер которого меньше. Четыре из -линий предопределены для таких устройств, как последовательный порт (IRQ4), жесткий диск (IRQ5), гибкий диск (IRQ6) и порт печатающего устройства (IRQ7), оставляя неиспользуемыми только IRQ2 и IRQ3 [линии, соответствующие двум другим, используемым в IBM PC уровням IRQ, даже не выведены на магистраль, а используются на системной плате для обеспечения работы таймера с частотой пересчета 18,2 Гц и клавиатуры (IRQ1)]. В том случае, если вы хотите дополнительно подключить стример или локальную сеть, придется использовать IRQ2 и IRQ3. Более того, прерывания отрабатываются по фронту сигнала, что делает тщетным какие бы то ни было разумные попытки использовать проводное «ИЛИ» для того, чтобы подключить несколько периферийных устройств к одной -линии. Общие линии прерываний.Обычный протокол обработки прерываний, применяемый во многих компьютерах, обходит подобные ограничения. Посмотрите на рис. 10.13. Имеется несколько приоритетных линий -типа; здесь на входах ЦП (или других узлов, непосредственно с ними связанных) используется отрицательная логика. Для того чтобы сформировать сигнал прерывания, вы должны задать низкий уровень потенциала на одной из -линий, используя, как показано, микросхему с открытым коллекторным выходом (или с тремя выходными состояниями). (Отметим хитрость, которая заключается в использовании элемента с трехстабильным выходом в качестве имитатора элемента с открытым коллектором.) Линии IRQ, каждая из которых подключена к нагрузочному резистору, используются несколькими периферийными устройствами совместно, так что к каждой IRQ-линии можно подключить столько устройств, сколько захочется; в нашем примере два порта совместно используют IRQ1.
Рис. 10.13. Линии прерываний, совместно используемые несколькими устройствами. Вообще говоря, более «нетерпеливое» устройство следует подключать к -линии с более высоким приоритетом. Поскольку линии IRQ используются совместно, всегда может возникнуть прерывание, вызванное еще одним устройством в то же время и на той же линии (где уже выставлено прерывание). Центральный процессор должен знать, чем инициировано прерывание для того, чтобы передать управление соответствующему обработчику. Для этого существуют два пути - простой и сложный. Простой путь называется автовекторизованным опросом и используется практически повсеместно (хотя и не в IBM PC). Это делается следующим образом. Автовекторизованный опрос. На одной плате с ЦП расположены некоторые электронные схемы (для примера мы возьмем электронные узлы, описываемые в гл. 11), которые инструктируют микропроцессор, что ему надо делать для поддержания режима автовекторизации, которая организована подобно тому, что сделано в IBM -каждый уровень прерывания вызывает передачу управления, адресуемую с помощью вектора, соответствующим образом расположенного в младших адресах памяти. Например, для МП серии 68000, с которой мы встретимся в гл. 11, существует 7 уровней приоритетных прерываний, которые адресуются -байтовыми указателями, располагаемыми в ячейках памяти с по . Адрес вызова обработчика прерываний вы записываете в эти ячейки как в вышеприведенном примере. Например, -байтовый адрес для обработчика, соответствующего уровню прерывания, вы должны записать в ячейки памяти с адресами (в -ричной форме) с по . Перейдя в обработчик, вы знаете, какой уровень прерываний вы обслуживаете; вам только неизвестно, какое конкретно устройство инициировало прерывание. Для того чтобы выяснить, вы просто должны проверить регистры состояний каждого из устройств, подключенных к линии, соответствующей этому уровню прерываний (устройство никогда не должно выставлять запрос на прерывание без дополнительной установки одного или более битов состояний, которые можно считать). Если бит установлен, показывая, что надо бы что-то сделать, вы делаете то, что надо, и еще заботитесь о сбросе сигнала IRQ. Некоторые устройства (такие, как клавиатура) сами сбрасывают в исходное состояние сигнал прерывания, когда осуществляется чтение данных, тогда как другие могут потребовать передачи специального байта по некоторому адресу порта ввода-вывода. Если устройство, которое вы обслуживаете, было единственным источником прерываний данного уровня, то теперь, после передачи управления обратно в прерванную программу и продолжения ее выполнения, сигнал IRQ будет установлен в высокое состояние. Однако если существовало второе устройство, выработавшее прерывание того же уровня, то сигнал на -линии будет по-прежнему оставаться в низком состоянии (с помощью приводного «ИЛИ») и после возврата управления из обработчика прерываний ЦП немедленно адресуется к тому же самому вектору и соответственно обработчику. При этом путем опроса будет обнаружено другое устройство, инициировавшее прерывание, выполнено то, что надо и управление будет вновь передано прерванной программе. Отметим, что порядок, в котором вы опрашиваете регистры состояний, эффективно устанавливает программный приоритет, дополнительно к аппаратному приоритету нескольких -уровней. Подтверждение прерывания. Мы не можем проститься с прерываниями без того, чтобы не упомянуть о более сложной процедуре идентификации источника прерывания - подтверждении прерывания. При этом ЦП не должен опрашивать регистры состояний возможных кандидатов, поскольку устройство, инициирующее прерывание, сообщает по запросу ЦП свое имя. Устройство осуществляет это, устанавливая «вектор прерывания» (обычно-уникальный -разрядный код) на шине данных, в ответ на сигнал подтверждения прерывания, вырабатываемый ЦП в процессе реализации прерывания. Необходимые сигналы вырабатывает почти каждый МП. Последовательность событий такова: а) ЦП замечает ожидающее прерывание; б) ЦП завершает выполнение текущей команды, затем вырабатывает (1) сигналы магистрали, говорящие о прерывании, (2) определяет уровень прерывания (по младшим разрядам шины адреса), а также (3) вырабатывает подобные сигналам чтения стробсигналы, которые приглашают устройство, инициировавшее прерывание, идентифицировать себя; в) устройство отвечает на такой набор сигналов магистрали, выставляя свой идентификатор (вектор прерывания) на шину данных; г) ЦП считывает вектор и передает управление обработчику прерываний, соответствующему прерывающему устройству; д) программная часть обработчика прерываний, как в нашем последнем примере, считывает флажки, получает и передает данные и т. д. В число прочих обязанностей обработчика прерываний входит наблюдения за тем, чтобы устройство, затребовавшее прерывание, не «забыло» потом его отменить; е) в конце концов обработчик прерываний возвращает управление той программе, выполнение которой было прервано. Возможно, проницательные читатели заметили слабое место в изложенной процедуре. В частности, она рассчитана на то, что только одно устройство выставляет свой вектор, тогда как одному -уровню могут соответствовать несколько устройств, которые вырабатывают запросы на прерывание одновременно. Традиционный метод обработки прерываний в такой ситуации заключается в том, что на магистрали формируется дополнительный сигнал (называемый INTP, приоритет прерывания), необычность которого состоит в том, что линия магистрали, соответствующая этому сигналу, не является общей для устройств, подключенных к магистрали, а, наоборот - проходит через схемную часть интерфейса каждого устройства, пронизывая все интерфейсы, начиная с ближайшего к ЦП устройства с наивысшим уровнем приоритета. На цветистом языке электроники такая конструкция называется daisy chain (дейзи-цепочка, или шлейфовое соединение). Правило, в соответствии с которым аппаратная логика обрабатывает сигнал INTP, следующее: в том случае, если вы не запрашивали прерывание на том уровне, требующем подтверждения, пропустите сигнал INTP к следующему устройству без изменения; если вы хотите подтвердить прерывание на данном уровне, поддерживайте низкий уровень сигнала INTP, выходящего из вашего устройства. Правило, в соответствии с которым надо теперь выставить вектор, выглядит следующим образом. Как только будет выработан вопрос от ЦП, установите код вашего вектора на шине данных только в том случае, если а) прерывание ожидает на том уровне, который требует подтверждение и б) на входе вашего устройства сигнал INTP имеет высокий уровень. Это гарантирует, что только одно устройство выставит свой вектор; таким образом, также устанавливается цепочка последовательных приоритетов для каждого -уровня, при этом устройство, электрически ближайшее к ЦП, будет обслуживаться в первую очередь. В таких компьютерах, где применяется подобная схема, для того, чтобы пропустить сигнал INTP через неиспользуемые разъемы магистрали, применяются малогабаритные разъемные замыкатели. Не забудьте их удалить, когда будете устанавливать дополнительную интерфейсную плату (а затем не забудьте их вернуть на место, когда будете отключать соответствующую плату!). У метода подтверждения прерывания, реализуемого с помощью последовательной дейзи-цепочки, имеется изящная альтернатива: вместо того, чтобы пропускать сигнал через каждый возможный источник прерываний, вы соединяете каждое подобное устройство отдельной линией с приоритетным шифратором (см. разд. 8.14), который, в свою очередь, подтверждает прерывание, идентифицируя наиболее приоритетное из устройств прерывания. Такая схема исключает суету с перетыканием замыкателей. Детально мы это обсудим в разд. 11.4 (рис. 11.8). В большинстве микрокомпьютерных систем описанная только что организация подтверждения запроса прерывания не используется в полной мере. В конце концов при уровневой автовекторизации можно обслужить 8 устройств-источников прерываний без опроса и в несколько раз большее их количество с опросом. Только в больших компьютерных системах, где требуется быстрая реакция при наличии десятков устройств, которые вырабатывают прерывания, возможно, вы поддадитесь искушению усложнить протокол подтверждения прерывания, либо используя аппаратно реализованную последовательную дейзи-цепочку приоритетов, либо - параллельное приоритетное кодирование. Однако важно понимать, что даже простые компьютеры могут использовать внутреннее векторизованное подтверждение прерывания. Например, простая уровневая автовекторизованная схема прерываний IBM PC, как она представляется пользователям магистрали, на самом деле поддерживается микросхемой программируемого контроллера прерываний типа 8259, которая размещается вблизи ЦП и генерирует надлежащую последовательность подтверждений прерывания, описанную ниже. Это необходимо, так как МП 8086 (и его «наследники») не могут сами по себе использовать автовекторизацию. С другой стороны, МП популярной серии 68000 могут использовать автовекторизацию всего лишь с использованием одной дополнительной микросхемы (см. гл. 11). Маскирование прерываний.В нашем простом примере с клавиатурой мы включили триггер таким образом, что прерывания клавиатуры могут быть заблокированы, даже несмотря на то, что контроллер типа 8259 позволяет выключать («маскировать») каждый уровень прерывания в отдельности. Мы поступили таким образом, чтобы какое-нибудь другое устройство могло затем использовать IRQ2. Для магистрали с совместно используемыми -линиями (чувствительными к уровню) особенно важно сделать каждый источник прерываний маскируемым с помощью бита выходного порта ввода-вывода. Например, порт печатающего устройства обычно вырабатывает прерывание всякий раз, когда его выходной буфер пуст («дайте еще ); но после завершения печати этот запрос уже не нужен. Очевидное решение заключается в том, чтобы выключить прерывания печатающего устройства.Поскольку могут быть другие устройства, «захватившие» тот же уровень прерываний, надо не маскировать целиком весь уровень, а передать бит в порт печатающего устройства для того, чтобы блокировать его прерывание. Как IBM PC это делает.Используемый в IBM PC МП 8086/8 в самом деле использует полный протокол подтверждения векторизованных прерываний. Однако для простоты проектировщики IBM PC использовали микросхему контроллера прерываний 8259 на системной плате. Эта микросхема используется следующим образом. К ней подключены линии IRQ от устройств ввода-вывода, расположенных на вставных печатных платах (где вырабатываются соответствующие запросы на прерывания), сам же контроллер соединен с линиями данных и управления собственно МП. Когда контроллер получает от внешнего устройства запрос на прерывание по линии IRQ, он выясняет его приоритет и осуществляет весь комплекс действий, связанных с формированием соответствующего вектора на шине данных. Он имеет регистр маски (доступный через порт ввода-вывода ) так, что вы можете запретить произвольный набор прерываний.Контроллер типа 8259 позволяет выбирать (программным образом) способ формирования прерывания либо по уровню, либо по фронту соответствующего сигнала на входных линиях IRQ; выбор осуществляется с помощью записи байта в управляющий регистр (порт ввода-вывода ). К сожалению, конструкторы PC решили использовать формирование по фронту, возможно из-за того, что это несколько упрощает формирование прерываний (например, можно непосредственно подать выходной прямоугольный сигнал таймера реального времени на линию ). Если же вы вместо этого выбрали способ формирования прерываний по уровню сигнала, вы можете «повесить» на каждую -линию множество устройств, вырабатывающих прерывания и программно опрашивать их так, как это было описано выше. К несчастью, базовая система ввода-вывода PC (ROM BIOS) и операционная система (за исключением аппаратной части) предполагают формирование по фронту, так что выбор окончателен. (Почти все остальные компьютеры, включая даже «потомков» PC и PC/AT, используют формирование прерываний по уровню.) Существует частичное решение этой проблемы. Постольку, поскольку -линия доступна, вы можете объединить на одной плате PC несколько устройств, вырабатывающих прерывания, и логическую схему, которая формирует прерывания для соответствующей -линии по фронту; для этого можно даже воспользоваться дополнительным контроллером типа 8259 (порты ввода-вывода которого должны быть доступны ЦП). Но поскольку устройство, вырабатывающее прерывание, должно знать о каждом из остальных устройств, такую схему нельзя использовать при независимом подключении внешних устройств. Более того, вы по-прежнему вынуждены использовать по одной -линии на плату внешних устройств, и сложную систему так построить трудно: в IBM PC имеются только два незадействованных -уровня. Программные прерывания.Микропроцессоры серии Intel 8086 имеют команду (INT , где которая позволяет вам осуществить векторизованную передачу управления того же рода, что и настоящее аппаратное прерывание. В самом деле, среди 256 возможных векторов переходов имеются и соответствующие 8 уровням -запросов аппаратных прерываний (с INT 8 по INT 15, чтобы быть точным). Таким образом, вы можете организовать программное прерывание из некоторой программы. IBM PC использует такие программные прерывания для того, чтобы разрешить вам взаимодействовать с операционной системой и различными программами, «зашитыми» в ПЗУ. Например, INT 5 пересылает копию экрана на печатающее устройство. Особенно важно применение , поскольку это прерывание обеспечивает вызов системных функций: вы сообщаете системе, какую из системных функций хотите использовать, записывая соответствующее число в регистр АН прежде, чем выполнить INT 21Н.Не следует путать такие программные прерывания с аппаратными прерываниями, вырабатываемыми внешними устройствами, о чем мы говорили выше. Выполнение программных прерываний - это искусный прием использования векторизованной передачи управления из программы пользователя системному программному обеспечению. Но такие прерывания не являются настоящими прерываниями в смысле аппаратно вырабатываемых запросов внешних автономных устройств. Напротив, вы можете встроить эти прерывания в свою программу, вы знаете, когда они произойдут (вот почему вы можете передавать аргументы через регистры ЦП) и они являются всего навсего реакцией (почти такой же, какая следует в случае «истинного» прерывания) ЦП на свою собственную команду. Можете считать программные прерывания мудрым способом расширения набора команд ЦП.
|
1 |
Оглавление
|