Главная > Искусство схемотехники, Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.13. Минимизация и карты Карно

Поскольку логическую функцию, даже такую простую, как Исключающее ИЛИ, можно реализовать различными способами, часто бывает нужно найти для нее самое простое решение, или, возможно, наиболее удобное схемное решение. Над этой проблемой бились многие светлые умы и в настоящее время существует несколько способов ее разрешения, включая алгебраические методы, реализуемые с помощью ЭВМ. При числе входов, не превышающем четырех, наилучшим методом является составление карты Карно. Этот метод позволяет также найти логическое выражение (если оно заранее неизвестно) по таблице истинности. Проиллюстрируем этот метод с помощью примера. Предположим, что требуется построить схему для мажоритарного подсчета голосов при баллотировке. Будем считать, что имеются три входа, работающие в положительной логике (на любом из них может быть 1 или 0) и выход (0 или 1). Выход равен 1, если 1 присутствует не менее чем на двух входах.

Шаг 1. Составим таблицу истинности

Здесь должны быть представлены все возможные сочетания и соответствующие им состояния выхода (или выходов). В том случае, когда состояние входа не оказывает влияния на выход, ставится X (любое значение).

Рис. 8.27. Карта Карно.

Шаг 2. Составим карту Карно. Она представляет собой нечто очень близкое к таблице истинности, но содержит переменные, которые расположены по двум осям. Переменные должны быть расположены таким образом, чтобы при переходе от каждого квадрата к соседнему менялось бы состояние только одного входа (рис. 8.27).

Шаг 3. Отметим на карте группы, содержащие 1 (можно также использовать и группы, содержащие 0). Три овала на рис. 8.27 определяют логические выражения АВ, АС и ВС.

Рис. 8.28.

Далее получим требуемую функцию

схемная реализация ее показана на рис. 8.28. Этот результат кажется очевидным, когда он уже получен. Можно было бы составить выражение для нулей и вместо этого получить

Это выражение может оказаться полезным для случая, когда в каких-либо точках схемы имеются дополнения А, В и С.

Некоторые комментарии к картам Карно.

1. Ищите группы, содержащие 2, 4, 8 и т.д. квадратов. Они имеют простые логические выражения.

2. Логика будет тем проще, чем крупнее блок вы опишете.

3. Состыкуйте края карты Карно. Например, карта на рис. 8.29 описывается выражением С.

4. Блок «единиц», содержащий один или два «нуля», лучше всего описывается с помощью группировки, показанной на рис. 8.30. Этому блоку соответствует логическое выражение .

5. Места, содержащие X (любое значение), представляют собой «карт-бланш». Записывайте в них «нули» или «единицы» так, чтобы можно было получить простейшую логику.

Рис. 8.29.

Рис. 8.30.

6. Карта Карно может и не привести к лучшему решению. Иногда более сложное логическое выражение имеет более простую схемную реализацию, например в случае, когда некоторые члены выражения уже сформированы схемой в виде логических сигналов, которые можно использовать в качестве входных. Кроме того, реализации Исключающего ИЛИ не очевидны из карты Карно. Наконец, при выборе логической структуры схемы определенную роль играют ограничения, связанные с конструкцией ИМС (например, когда в одном корпусе содержатся четыре -входовых вентиля). Когда используются такие программируемые логические устройства как ПМЛ для конструирования логических функций, внутренняя структура (программируемые вентили И и фиксированные вентили ИЛИ) сдерживает реализацию, которая могла бы быть применена.

Упражнение 8.13. Нарисуйте карту Карно для логики, которая позволит определить, является ли -разрядное двоичное число «главным», считая при этом, что главными не являются числа 0, 1 и 2. Дайте схемную реализацию на -входовых вентилях.

Упражнение . Найдите логическое выражение, с помощью которого можно было бы умножить два -разрядных двоичных числа и получить -разрядный результат. Рекомендации: для каждого выходного бита пользуйтесь отдельными картами Карно.

1
Оглавление
email@scask.ru