Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
9.38. Цифровые фильтрыПоследний пример затронул интересную тему цифровой фильтрации, в данном случае формирование НЧ-сигнала путем взвешенного суммирования 32 значений псевдослучайной последовательности, каждое из которых соответствует уровню напряжения 0 или
Здесь Заметьте, что такой фильтр может обладать интересным свойством симметричности во времени, т. е. усреднением прошлого и будушего для того, чтобы сформировать текущее значение выхода.
Рис. 9.91. Нерекурсивный цифровой фильтр. Разумеется, реальные аналоговые фильтры умеют лишь смотреть в прошлое и соответствуют цифровым фильтрам с ненулевыми весовыми коэффициентами только при Частотная характеристика симметричного фильтра.Можно показать, что частотная характеристика симметричного фильтра![]()
где Рекурсивные фильтры.Можно получить интересный класс цифровых фильтров, если на вход фильтра в дополнение к внешнему входному сигналу подать собственный выходной сигнал фильтра. Такой фильтр можно рассматривать как фильтр с обратной связью. Он имеет причудливое название рекурсивный фильтр (или с бесконечной импульсной характеристикой) в противоположность рассмотренному выше нерекурсивному (с конечной импульсной характеристикой) фильтру. Можно, например, сформировать выходной сигнал в соответствии со следующим выражением:
Это соответствует низкочастотной характеристике, эквивалентной той, которой обладает простой низкочастотный
где Пример НЧ-фильтра.В качестве числового примера предположим, что вам требуется отфильтровать ряд числовых значений, соответствующих сигналу с затуханием 3 дБ на частоте![]() ![]() ![]()
Рис. 9.92. Рекурсивный фильтр на коммутируемых конденсаторах. С увеличением постоянной времени относительно времени между отсчетами Для обработки данных уже представленных в виде дискретных отсчетов, как, например, массив данных в компьютере, вы, возможно, предпочтете использовать такой фильтр. Рекурсивный фильтр при этом будет реализовываться с помощью однократного прохода по данным с тривиальной арифметической обработкой. Программа НЧ-фильтра на языке Фортран будет выглядеть следующим образом:
где X - матрица данных, НЧ-фильтр с коммутацией.Такой же фильтр можно построить аппаратным путем, используя схему, показанную на рис. 9.92. Ключи на полевых транзисторах![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
Приравнивая эти коэффициенты к заданному ранее значению А, получим
Упражнение 9.8. Покажите, что этот результат правилен. Этот фильтр практичен во всех отношениях и обладает одной привлекательной особенностью - электронной настройкой посредством тактовой частоты Приведенная схема представляет собой простой пример фильтра с коммутацией; в этот класс фильтров входят фильтры, выполненные на матрицах коммутируемых конденсаторов. Они имеют периодическую частотную характеристику, что делает их удобными для использования в качестве гребенчатых и узкополосных режекторных фильтров. Для всех фильтров классического типа (Баттерворта, Чебышева и т.п.) можно построить их приближенные дискретные аналоги в форме ВЧ, НЧ, полосовых и заграждающих фильтров, как симметричных во времени, так и с истинным временем запаздывания. Такие фильтры очень удобны при обработке квантованных данных, перед которыми, безусловно, большое будущее. В настоящее время выпускают большое число недорогих ИМС фильтров с коммутируемыми конденсаторами. ИМС
Рис. 9.93. Цифровой генератор синусоидальных сигналов. С помощью внешних резисторов устанавливаются тип фильтра (ВЧ, НЧ, полосовой, заграждающий) и характеристика фильтра (Баттерворта, Чебышева и т. п.), а с помощью тактовой частоты, как и раньше, устанавливается частота среза. Другими изготовителями фильтров с коммутируемыми конденсаторами являются фирмы American Microsystems (AMI), Linear Technology (LTC) и Reticon. Фирма LTC как всегда использовала несколько хитроумных приемов для улучшения технических характеристик. Ее фильтры
Рис. 9.94. Цифровой НЧ-фильтр с малым сдвигом по постоянному току.
Рис. 9.95. а - преобразователь отрицательных уровней в уровни ТТЛ; б - управление нагрузкой; подключенной на землю; Вообще говоря, такие фильтры с коммутируемыми конденсаторами работают только на верхнем конце звукового диапазона. В них также наблюдается существенное проникновение тактовой частоты на выход обычно в пределах Формирование синусоидальных колебаний цифровым способом.С нерекурсивной цифровой фильтрацией связан интересный способ синтеза синусоидальных колебаний с использованием взвешенных сумм сигналов с выходов счетчика Джонсона (кольцевой счетчик с коэффициентом пересчета, вдвое превышающим число разрядов). Схема на рис. 9.93 показывает способ реализации такого генератора. ИМС 4015 представляет собой![]() ![]() ![]() ![]() ![]() ![]()
|
1 |
Оглавление
|