Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
10.23. Форматы чиселФормат байтов (или слов), получаемых из частотомера в рассмотренном примере, отличается от внутримашинного двоичного формата; частотомер образует двоично-кодированные десятичные коды, упакованные по две цифры в байте (или четыре цифры в слове). Чтобы с этими числами можно было выполнять какие-то вычисления, их следует преобразовать в целые числа или в числа с плавающей точкой (хотя в системе команд микропроцессора предусмотрены и команды с «десятичной коррекцией», позволяющие выполнять арифметические операции непосредственно над упакованными двоично-кодированными десятичными числами). Рассмотрим форматы чисел, обычно используемые в компьютерах (рис. 10.24), предмет, кратко затронутый нами в начале гл. 8. Целые числа. Целые числа (integer) со знаком всегда представляются, как дополнение до 2 и занимают 1,2 или 4 байт (см. рис. 10.24). Старший бит является знаковым, хотя дополнение до двух не совпадает с представлением в виде знака и числа (т. е. — 1 записывается, как 11111111, а не 10000001; см. разд. 8.03). Дополнение до 2 можно представить себе, как «смещенное» двоичноес инвертированным старшим битом; но можно рассматривать его и как целое число со значением бит, указанным на рис. 10.24. Многие компьютеры позволяют объявлять переменные, как целые без знака в дополнение к объявлению целых со знаком в виде дополнения до 2. Двухбайтовое беззнаковое целое может иметь значение от 0 до 65535. Числа с плавающей точкой.Числа с плавающей точкой, называемые также действительными числами (real), обычно занимают 32 бит («одинарная точность») или 64 бит («двойная точность), однако иногда для промежуточных результатов вычислений используется дополнительный![]() ![]() ![]() На рис. 10.24 показаны
Рис. 10.24. Форматы чисел. S-знак. Мантисса также записывается любопытным способом, который был впервые использован фирмой DEC в своем формате с плавающей точкой. Двоичное число с плавающей точкой всегда можно записать в виде Упражнение 10.9. Сконструируйте на бумаге минимальное и максимальное нормализованные числа с плавающей точкой и убедитесь, что приведенные выше предельные значения соответствуют истине. Формат IEEE с двойной точностью образуется аналогично, но точность мантиссы более чем удваивается (увеличиваясь на 29 бит), а порядок получает дополнительные 3 бит. Диапазон чисел указан на рисунке. Формат IEEE допускает также хранение ненормализованных чисел, что несколько увеличивает диапазон со стороны маленьких чисел (за счет уменьшения точности); «денормализованные» числа могут доходить до величины Другой важный микрокомпьютерный формат чисел с плавающей точкой принадлежит фирме DEC и используется в компьютерах Последние два формата, приведенные на рис. 10.24, используются не в микрокомпьютерах, а в больших ЭВМ или в машинах специального назначения. Формат
Упражнение 10.10. Чтобы понять смысл последней фразы, напишите представление числа 1.0 в формате IBM. После этого напишите следующее меньшее число в том же формате. Использование в формате IBM числа 16 в качестве основания увеличивает динамический диапазон, но уменьшает точность. Более того, точность несколько изменяется от числа к числу из-за переменного количества лидирующих двоичных нулей; это явление известно, как «качание» (wobble). В формате IBM отсутствуют «не числа» и бесконечность, и имеется только один нуль (все биты нули); не нормализованные числа не допускаются. Имеется формат IBM и для чисел с двойной точностью (64 бит). Последний формат на рис. Хранение чисел в памяти.Разработчики микропроцессоров любят выражать свою индивидуальность, предусматривая хранение чисел в памяти в своеобразном порядке. Микропроцессоры![]() Преобразование данных в процессе ввода-вывода.Нам пришлось уже обсуждать форматы данных в контексте аппаратного интерфейса, который выдавал упакованные двоично-десятичные числа. Каков наиболее оптимальный способ работы с
В зависимости от типа входных данных, числа значащих цифр, диапазона их изменения и проч. может оказаться удобным преобразовывать входные данные в числа с плавающей точкой (для получения максимального динамического диапазона), или в целые числа (для получения максимального разрешения), или выполнить какие-то другие числовые процедуры (например, вычисление отклонений от среднего значения или разностей последующих отсчетов). Все это можно делать в программном «драйвере» конкретного устройства, т. е. в программном модуле, который управляет вводом данных. Мы видим, таким образом, что оптимизация программного обеспечения не может быть выполнена без понимания особенностей аппаратуры и смысла принимаемых данных. Еще одна причина, по которой столь важно освоиться в этом чудесном мире электронной аппаратуры!
|
1 |
Оглавление
|