Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Возможные применения программируемых логических интегральных схем (ПЛИС)Для выполнения некоторых функций ПЛИС подходит как нельзя лучше. Вот самые важные области применения и преимущества ПЛИС. Автоматы. Как и в предыдущем примере, ПЛИС естественным образом вписывается в произвольный синхронный автомат. Было бы неразумно использовать матрицу из Замена произвольной логики. Во многих схемах вы можете обнаружить узлы и клубки из вентилей, инверторов и триггеров, называемых с пренебрежением «произвольная логика» или «клей».
Рис. 8.83. Программируемое логическое устройство (я); обычная дискретная логика (6). ПЛИС обычно сокращает число корпусов в 4 и более раз. Кроме того, при использовании ПЛИС схема становится более понятной, поскольку применение большого числа вентилей означает, что всю необходимую вентильную обработку можно сделать при вводе в регистры (при этом выходы становятся строго синхронными) вместо того, чтобы комбинировать выходы регистра с вентилями (при этом выходы не будут строго синхронными); см. рис. 8.83. Гибкость. В ряде случаев вы не совсем представляете себе, как, в конце концов, должна работать ваша схема, тем не менее вы должны как-то ее завершить, чтобы иметь возможность с ней «поиграть». Здесь ПЛИС как раз к месту, так как в отличие от дискретной логики на некотором этапе вы имеете возможность заменить одну на другую без перемонтажа. Схемы на ПЛИС приобретают характер программ. Несколько версий. С помощью ПЛИС можно спроектировать одну единственную схему и затем изготавливать несколько различных версий устройства, выпуская платы с различно запрограммированными ПЛИС. Например, вы могли бы иметь компьютер, который содержит кристаллы памяти либо на Скорость и комплектация. При использовании ПЛИС проектирование схемы в общем случае можно выполнить гораздо быстрее (если вы, разумеется, хорошо ориентируетесь в этой области). Более того, вам потребуется всего несколько типов ПЛИС, а не несколько дюжин типов стандартных схем средней интеграции. Действительно, всего две новых ПЛИС GAL (базовая матричная логика) благодаря программируемости своей внутренней архитектуры (и связей) заменят целый набор ПМЛ. В частности, Расширение функций ПМЛ.Входы/выходы. Выводы выходов с 3 состояниями, подключенные внутри кристалла к входам матрицы И, можно использовать в качестве входов. Например, ПМЛ![]()
Рис. 8.84. Программируемая макроячейка базовой матричной логики. «Супер-ПМЛ». Ранее мы уже отмечали, что наиболее гибкая программируемая логика соответствует оригинальным ПМЛ, среди которых самыми известными являются стираемые КМОП-варианты фирм Lattice, VTI, Altera и др. ПМЛ GAL фирмы Lattice, например, использует программируемую логику с электрическим стиранием, так что вы можете перепрограммировать кристалл. Более того, выходные структуры («макроячейки») сами Фирма Altera имеет линию программируемой КМОП-логики, которая допускает ультрафиолетовое стирание по типу ЭППЗУ (в корпусе ИС над кристаллом имеется окно из кварцевого стекла). Такие устройства называют СПЛ ИС - стираемая программируемая логическая интегральная схема. Самая маленькая ИС из этой серии Другим подходом к созданию программируемой логики является ОЗУ - подобная вентильная матрица фирмы Xilinx. Впечатляющие кристаллы этой матрицы содержат огромные блоки конфигурируемой логики, причем конфигурация связей хранится во внутреннем ОЗУ кристалла (энергозависимая память). Эта память загружается от внешней памяти после включения питания либо от микропроцессора; кроме того, она может самозагружаться с использованием памяти типа энергонезависимого ПЗУ. Скорость и мощность. Оригинальная ПМЛ на биполярных транзисторах, разработанная на фирме Monolithic Memories (и быстро скопированная National и AMD) потребляла значительный ток - около
Рис. 8.85. Исключение глитча в ПМЛ; а - мультиплексор; б - для исключения глитча добавляется избыточный терм произведения; в - карта Карно с избыточным термом. Выбросы. ПЛИС, конечно, удивительная вещь, но вы можете, ненароком, оказаться в затруднительном положении, если не будете помнить о возможности логических состязаний. На рис. 8.85 показан Упражнение 8.33. Покажите, что дополнительный терм устраняет все возможности для появления выбросов. Упражнение 8.34. Какие логические термы следует добавить к С помощью карт Карно вы можете наглядно убедиться в существовании этих так называемых логических рисков; карта Карно для В предыдущем примере представлены так называемые статические выбросы, поскольку выход будет оставаться статическим. Существуют также динамические выбросы, проявление которых заключается в том, что выход, который должен сделать один единственный переход, начинает многократно переходить из состояния в состояние. При использовании программируемой логики можно избежать этих внутренних гоночных условий. В общем средства проектирования такие, как PALASM, ABEL и CUPL не пытаются решать эти проблемы. Если хотите, они делают все, чтобы ухудшить ситуацию, поскольку их логические оптимизаторы усердно работают по исключению таких избыточных термов.
|
1 |
Оглавление
|