Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
9.14. Кабельные связиПередачу цифровых сигналов от одного устройства к другому нельзя осуществлять с помощью простого одиночного проводника, такое соединение подвержено влиянию взаимных помех. Цифровые сигналы обычно передаются по коаксиальным кабелям, скрученным парам, плоским кабелям (иногда с земляной поверхностью или в экране), многожильным кабелям и все чаще по оптоволоконным кабелям. Мы встретимся еще раз с коаксиальными кабелями (нежно называемыми «коаксами») в гл. 13 в связи с радиочастотной техникой; здесь же мы намерены рассмотреть некоторые способы передачи цифровых сигналов между коробками с электроникой, поскольку эти способы составляют важную часть цифрового сопряжения. В большинстве случаев существуют специализированные ИС формирователей/приемников, способные облегчить вашу работу. Стандарт RS-232.Для сравнительно медленной передачи сигналов (несколько тысяч бит в секунду) по многожильным кабелям обычно используют известный сигнальный стандарт RS-232C (или более новый RS-232D). Стандартом определены биполярные уровни от![]() ![]()
Рис. 9.31. Кабельные приемники и передатчики высокой помехоустойчивости; выполнены по стандарту Кроме основного ТТЛ-совместимого элемента, состоящего из 4 пар «формирователь/приемник» (1488/1489), в настоящее время имеется несколько улучшенных ИС, включая маломощные варианты RS-232 широко используется для обеспечения связи между компьютерами и терминалами на стандартизованных скоростях передачи данных, входящих в диапазон от 110 до Непосредственное управление от 5-вольтовой логики.Линиями средней длины, как и шинами данных, можно управлять непосредственно логическими уровнями; в общем случае необходимы вентили с большой нагрузочной способностью по току (см. приведенный выше перечень под заголовком «шинные формирователи»). На рис. 9.32 показано несколько способов управления.
Рис. 9.32. Оконечные цепи с формированием логических уровней. На первой схеме буфер (может иметь открытый коллектор) управляет нагруженной линией с ТТЛ-триггером Шмитта в качестве приемника для повышения помехоустойчивости. Если уровень помех высок, то можно использовать, как показано на второй схеме, замедляющую RС-цепь с подстройкой постоянной времени (и скорости передачи!) в соответствии с конкретной обстановкой. В этой схеме триггер Шмитта играет важную роль. В последней схеме мощный КМОП-буфер управляет линией с комплексной нагрузкой и КМОП-триггером Шмитта в качестве приемника. Непосредственное управление с помощью логических уровней будет нормально работать на скрученной паре, плоском и коаксиальном кабелях средней длины (около
Рис. 9.33. Повышение помехоустойчивости с помощью высоковольтного кабельного формирователя. Проблема взаимосвязи сигналов практически лишает возможности осуществить непосредственное управление от логики с использованием многожильных кабелей. В следующем разделе мы покажем несколько интересных осциллограмм, иллюстрирующих эту проблему, и познакомим с другим эффективным «лекарством», дифференциальным логическим управлением. Важное замечание: никогда не пытайтесь управлять длинными линиями от небуферированных тактируемых элементов (триггеров, одновибраторов, счетчиков и некоторых регистров сдвига); емкостная нагрузка и эффекты «длинных линий» могут вызвать неправильное поведение схемы. «Буферированные» элементы содержат выходные формирователи, включенные между внутренними регистрами и выходными контактами и поэтому «не видят» реальных сигналов (с плохими параметрами) на выходных линиях и не сталкиваются с этой проблемой. Управление от высоковольтной логики.Если для передачи сигналов по кабелям вы используете непосредственное управление от логики, то вы можете повысить помехоустойчивость, увеличивая перепад сигналов. В примере, показанном на рис. 9.33, в качестве генератора![]() ![]() ![]() Трапецеидальное управление.Для снижения остроты проблемы емкостной связи с соседними линиями фирма National изготавливает линейные![]() ![]() Дифференциальное управление; стандарт RS-422.Намного более высокую помехоустойчивость можно получить, используя дифференциальные сигналы, т. е. подавая Q и Q на скрученную пару с дифференциальным приемником (рис. 9.34). Здесь парные ТТЛ-инверторы посылают в нагруженную скрученную пару прямой и инверсный сигналы, а дифференциальный линейный приемник 75115 воспроизводит чистые уровни ТТЛ. Мы выбрали биполярные ТТЛ-формирователй, а не КМОП, поскольку они менее склонны к разрушению от статического электричества и к тиристорному защелкиванию из-за отражений в линии. Эта схема обеспечивает высокую степень подавления синфазных помех и восстанавливает четкие логические уровни из линейных сигналов, которые могут выглядеть довольно устрашающе.
Рис. 9.34. Быстродействующие дифференциальные кабельные ТТЛ-передатчики и приемники. Показанная на рисунке форма колебаний дает лишь общее представление о том, что можно увидеть на отдельных сигнальных линиях в сравнительной чистой системе; реальные сигналы могут быть довольно сильно искажены, хотя и будут оставаться монотонными (отсутствует обратная волна). Примером линейного приемника с настраиваемым временем отклика является элемент 75115; другой дифференциальный приемник (75152) позволяет управлять гистерезисом. Для душевного спокойствия желательно использовать приемник с гистерезисом (и с настраиваемой постоянной времени); такие приемники как раз и призваны для того, чтобы разбираться с самыми причудливыми формами сигналов. Формирователи с отводом тока. Элементы типа
Рис. 9.35. Дифференциальная схема токовой связи с приемником. Наш опыт показывает, что дифференциальные формирователи с отводом тока позволяют достичь действительно впечатляющей скорости передачи данных. Это объясняется, по-видимому, тем, что высокоимпедансное управление с отдачей тока гарантирует возможность нагрузки кабеля на его характеристическое сопротивление для обоих состояний формирователя. В соответствии с техническими данными скорость передачи составляет более 1 Мбит/с на линии длиной Реальные осциллограммы, приведенные на рис. 9.36, показывают, насколько эффективным может оказаться дифференциальное управление с отводом тока при решении проблемы синфазных помех.
Рис. 9.36. Осциллограммы, показывающие превосходную помехоустойчивость дифференциальной передачи данных (дифференциальный приемник 75108). (С разрешения фирмы Texas Instruments.) а - вход приемника На представленном примере сигнал с размахом Стандарт
Рис. 9.37. Зависимость между скоростью передачи данных при последовательной связи и длиной кабеля. Распространенной серией формирователей/приемников для
Рис. 9.38. Ухудшение параметров и перекрестные помехи цифровых сигналов, а - прямоугольные импульсы с Полная длина кабеля составила примерно Мы предпочитаем использовать дифференциальную передачу сигналов в тех случаях, где важную роль играют надежность и хорошая помехозащищенность. За счет эффектов компенсации дифференциальный сигнал обеспечивает низкую степень связи с другими сигналами («перекрестные помехи»).
Рис. 9.38. Продолжение: Использование скрученной пары, а не плоского кабеля, даже улучшает работу. На рис. 9.38 показано несколько осциллограмм, полученных для RS-422 и для непосредственного управления от логики с использованием как плоского кабеля, так и плоской скрученной пары (последняя была в действительности вариантом, известным под названием «скрученный и плоский»; это соединение состоит из жгута скрученных пар, прерываемых на Дифференциальные линейные приемники работают нормально до тех пор, пока принимаемые сигналы находятся в пределах допустимого диапазона синфазных напряжений, обычно в несколько вольт (для
Рис. 9.39. Набор кристаллов AMD TAXI для быстродействующей линии последовательной связи. (С разрешения фирмы Advanced Micro Devices), а - передатчик Если эти проблемы встают слишком остро, можно использовать пару резистивных делителей на входе приемника, или использовать приемник с встроенным аттенюатором, например При передаче сигналов по действительно длинным кабелям или при передаче в условиях очень сильных помех обычно используют индуктивную связь. Применив трансформаторы, вы, разумеется, лишаетесь возможности передавать логические сигналы постоянного тока: вы вынуждены кодировать данные определенным способом, например с использованием «несущего» сигнала. Локальные сети (см. разд. 10.21) обычно используют индуктивную связь. Кристалл TAXI фирмы AMD.Фирмой AMD разработана весьма интересная пара дифференциальных![]() ![]() ![]() По отношению к пользователю линия выглядит как простой параллельный регистр. Эти ИС содержат кабельные формирователи и приемники для Формирователи для коаксиальных кабелей.Благодаря своей геометрии коаксиальные кабели обладают очень хорошей защитой от внешних влияний. Кроме того, однородность диаметра и внутренних размеров (по сравнению со случайными отклонениями в случае жгутов и скрученных пар) позволяет достаточно точно предсказывать величину характеристического импеданса и, следовательно, обеспечить превосходные условия для передачи; именно по этой причине только они используются для передачи аналоговых радиочастотных сигналов.Существуют несколько пар формирователей/приемников, удобных для цифровой передачи по коаксиальному кабелю; пример показан на рис. 9.40. Кабель нагружен на характеристическое сопротивление, в данном случае 51 Ом. Элемент
Рис. 9.40. Передатчик и приемник для
Рис. 9.41. Токовый приемопередатчик ЭСЛ (дуплексный). Скорость передачи в такой схеме достигает 100 кбит/с на кабеле в Различные семейства ЭСЛ содержат несколько пар формирователей/приемников для С помощью одного эмиттерного
Рис. 9.42. Простой формирователь для Транзистор
Рис. 9.43. Недорогая оптоволоконная линия связи (на основе рис. 7 спецификации MFOD71 фирмы «Моторола»). Волоконно-оптические кабели.Новый многообещающий способ передачи сигналов основан на применении волоконно-оптических кабелей. Это кабели с превосходным пластиковым покрытием с согласующими соединителями, излучателями и детекторами. Высококачественные волоконно-оптические кабели могут осуществлять передачу в полосе частот до нескольких гигагерц на расстояния в десятки и сотни километров без потери дробных децибел на километр. По сравнению с коаксиальными кабелями, которые могут иметь разброс параметров (скорость распространения зависит от частоты, количество потерь также определяется частотой, что вызывает искажения колебаний), дисперсия волоконно-оптических кабелей незначительна. Кроме того, волоконно-оптические кабели являются изоляторами, поэтому их можно использовать для передачи сигналов между устройствами с изолированной землей, или на различных напряжениях. В отличие от обычных кабелей они не являются антеннами по отношению к радиочастотным и импульсным помехам. Они легче, безопаснее, обладают более высокой стойкостью, чем традиционные кабели, к тому же, они потенциально дешевле.Существует несколько типов волоконно-оптических кабелей, позволяющих сделать выбор между стоимостью и производительностью (длина на ширину полосы). Самым дешевым является многомодовое волокно со ступенчатым изменением коэффициента преломления; обычно это пластиковое волокно диаметром 1 мм. Вы можете передавать по нему излучение инфракрасного светодиода (а не лазерного диода), а в качестве детектора использовать фототранзистор или
|
1 |
Оглавление
|