Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3. Шифры перестановкиШифр, преобразования из которого изменяют только порядок следования символов исходного текста, но не изменяют их самих, называется шифром перестановки Рассмотрим преобразование из ШП, предназначенное для зашифрования сообщения длиной
где Зная подстановку, задающую преобразование, можно осуществить как зашифрование, так и расшифрование текста. Например, если для преобразования используется подстановка
и в соответствии с ней зашифровывается слово В качестве упражнения читателю предлагается самостоятельно выписать подстановки, задающие преобразования в описанных ниже трех примерах шифров перестановки. Ответы помещены в конце раздела. Читатель, знакомый с методом математической индукции, может легко убедиться в том, что существует С увеличением числа (см. скан) При больших
где Примером ШП, предназначенного для зашифрования сообщений длины Для использования на практике такой шифр не удобен, так как при больших значениях Широкое распространение получили шифры перестановки, использующие некоторую геометрическую фигуру. Преобразования из этого шифра состоят в том, что в фигуру исходный текст вписывается по ходу одного «маршрута», а затем по ходу другого выписывается с нее. Такой шифр называют маршрутной перестановкой. Например, можно вписывать исходное сообщение в прямоугольную таблицу, выбрав такой маршрут: по горизонтали, начиная с левого верхнего угла поочередно слева направо и справа налево. Выписывать же сообщение будем по другому маршруту: по вертикали, начиная с верхнего правого угла и двигаясь поочередно сверху вниз и снизу вверх. Зашифруем, например, указанным способом фразу:
используя прямоугольник размера (см. скан) Зашифрованная фраза выглядит так:
Теоретически маршруты могут быть значительно более изощренными, однако запутанность маршрутов усложняет использование таких шифров. Ниже приводятся описания трех разновидностей шифров перестановки, встречавшихся в задачах олимпиад. Шифр «Сцитала». Одним из самых первых шифровальных приспособлений был жезл («Сцитала»), применявшийся еще во времена войны Спарты против Афин в V веке до н. э. Это был цилиндр, на который виток к витку наматывалась узкая папирусная лента (без просветов и нахлестов), а затем на этой ленте вдоль его оси записывался необходимый для передачи текст. Лента сматывалась с цилиндра и отправлялась адресату, который, имея цилиндр точно такого же диаметра, наматывал ленту на него и прочитывал сообщение. Ясно, что такой способ шифрования осуществляет перестановку местами букв сообщения. Шифр «Сцитала», как видно из решения задачи 2.1, реализует не более Имеются еще и чисто физические ограничения, накладываемые реализацией шифра «Сцитала». Естественно предположить, что диаметр жезла не должен превосходить 10 сантиметров. При высоте строки в 1 сантиметр на одном витке такого жезла уместится не более 32 букв Шифр «Поворотная решетка». Для использования шифра, называемого поворотной решеткой, изготавливается трафарет из прямоугольного листа клетчатой бумаги размера Буквы сообщения последовательно вписываются в вырезы трафарета (по строкам, в каждой строке слева направо) при каждом из четырех его возможных положений в заранее установленном порядке. Поясним процесс шифрования на примере. Пусть в качестве ключа используется решетка Зашифруем с ее помощью текст
Наложив решетку на лист бумаги, вписываем первые 15 (по числу
Рис. 1. вырезов) букв сообщения:
Рис. 2.
Рис. 3.
Рис. 4.
Рис. 5. Получатель сообщения, имеющий точно такую же решетку, без труда прочтет исходный текст, наложив решетку на шифртекст по порядку четырьмя способами. Можно доказать, что число возможных трафаретов, то есть количество ключей шифра «решетка», составляет больше числа Широко распространена разновидность шифра маршрутной перестановки, называемая «шифром вертикальной перестановки» (ШВП). В нем снова используется прямоугольник, в который сообщение вписывается обычным способом (по строкам слева направо). Выписываются буквы по вертикали, а столбцы при этом берутся в порядке, определяемом ключом. Пусть, например, этот ключ таков: (5,4,1,7,2,6,3), и с его помощью надо зашифровать сообщение:
Впишем сообщение в прямоугольник, столбцы которого пронумерованы в соответствии с ключом: (см. скан) Теперь, выбирая столбцы в порядке, заданном ключом, и выписывая последовательно буквы каждого из них сверху вниз, получаем такую криптограмму:
Число ключей ШВП не более Пользуясь приведенной выше формулой Стирлинга при больших В случае, когда ключ ШВП не рекомендуется записывать, его можно извлекать из какого-то легко запоминающегося слова или предложения. Для этого существует много способов. Наиболее распространенный состоит в том, чтобы приписывать буквам числа в соответствии с обычным алфавитным порядком букв. Например, пусть ключевым словом будет пор, пока все буквы не получат номера. Таким образом, мы получаем следующий ключ:
Перейдем к вопросу о методах вскрытия шифров перестановки. Проблема, возникающая при восстановлении сообщения, зашифрованного ШП, состоит не только в том, что число возможных ключей велико даже при небольших длинах текста. Если и удастся перебрать все допустимые варианты перестановок, не всегда ясно, какой из этих вариантов истинный. Например, пусть требуется восстановить исходный текст по криптограмме
полученной шифром перестановки. Возможны, как минимум, два варианта исходного сообщения:
Эти варианты имеют прямо противоположный смысл и в имеющихся условиях у нас нет возможности определить, какой из вариантов истинный. Иногда, за счет особенностей реализации шифра, удается получить информацию об использованном преобразовании (перестановке). Рассмотрим шифр «Сцитала» из задачи 2.1. Выше уже рассматривался вопрос о количестве перестановок, реализуемых «Сциталой». Их оказалось не более 32. Это число невелико, поэтому можно осуществить перебор всех вариантов. При достаточной длине сообщения, мы, скорее всего, получим единственный читаемый вариант текста. Однако, используя информацию о расположении линий, оставленных шифровальщиком, удается определить диаметр стержня, а значит, и возникающую перестановку букв (см. задачу 2.1). В рассмотренном примере шифровальщик по неосторожности оставил на папирусе следы, позволяющие нам легко прочитать сообщение. Возможны и другие ситуации, когда не очень «грамотное» использование шифра облегчает вскрытие переписки. В задаче 5.2 содержится пример текста, зашифрованного ШВП. По условию пробелы между словами при записи текста в таблицу опускались. Поэтому заключаем, что все столбцы, содержащие пробел в последней строке, должны стоять в конце текста. Таким образом, возникает разбиение столбцов на две группы (содержащие 6 букв, и содержащие 5 букв). Для завершения восстановления исходного текста достаточно найти порядок следования столбцов в каждой из групп в отдельности, что гораздо проще. Аналогичная ситуация возникает и при «неполном» использовании шифра «решетка» (см. задачу 4.1). Пусть имеется решетка размера На примере решения задачи 5.2 продемонстрируем еще один подход к вскрытию шифров вертикальной перестановки — лингвистический. Он основан на том, что в естественных языках некоторые комбинации букв встречаются очень часто, другие — гораздо реже, а многие вообще не встречаются (например — Будем подбирать порядок следования столбцов друг за другом так, чтобы во всех строках этих столбцов получались «читаемые» отрезки текста. В приведенном решении задачи восстановление текста начинается с подбора цепочки из трех столбцов первой группы, содержащей в последней строке сочетание Сочетание лингвистического метода с учетом дополнительной информации довольно быстро может привести к вскрытию сообщения. В заключение рассказа о шифрах перестановки приведем историю с зашифрованным автографом А. С. Пушкина, описанную в романе В. Каверина «Исполнение желаний». Главный герой романа — студент-историк (см. скан) (см. скан) Без особых усилий Трубачевский прочитал рукопись, и ничего не понял. Он переписал ее, получилась бессвязная чепуха, в которой одна строка, едва начавшая мысль, перебивается другой, а та — третьей, еще более бессмысленной и бессвязной. Он попробовал разбить рукопись на строфы, — опять не получилось. Стал искать рифмы, — как будто и рифм не было, хотя на белый стих все это мало похоже. Просчитал строку — четырехстопный ямб, размер, которым написан «Евгений Онегин». Трубачевский с азартом взялся за рукопись, пытался читать ее, пропуская по одной строке, потом по две, по три, надеясь случайно угадать тайную последовательность, в которой были записаны строки. У него ничего не получалось. Тогда он стал читать третью строку вслед за первой, пятую за третьей, восьмую за пятой, предположив, что пропуски должны увеличиваться в арифметической прогрессии. Все то же! Отчаявшись, он бросил эту затею. Однако, она не давала ему покоя ни на лекции, ни в трамвае ... Как шахматист, играющий в уме, он не только знал наизусть каждую строчку, он видел ее в десяти комбинациях сразу. Прошло время. Однажды, когда он смотрел на светлые пятна окон подходящего к перрону поезда, каким-то внутренним зрением он увидел перед собой всю рукопись — и с такой необыкновенной отчетливостью, как это бывает только во сне. Сможете ли вы прочитать эти стихи? Ответ вы найдете в романе В. Каверина. Ответы к упражнению.(см. скан)
|
1 |
Оглавление
|