Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
11. НенадежностьПредположим теперь, что для английского текста используется шифр простой подстановки и что перехвачено определенное число, скажем Это происходит, вообще говоря, со всеми разрешимыми шифрами. Прежде чем перехвачена криптограмма, можно представить себе априорные вероятности, связанные с различными возможными сообщениями, а также с различными ключами. После того как материал перехвачен, шифровальщик противника вычисляет их апостериорные вероятности. При увеличении числа N вероятности некоторых сообщений возрастают, но для большинства сообщений они убывают до тех пор, пока не останется только одно сообщение, имеющее вероятность, близкую к единице, в то время как полная вероятность всех других близка к нулю. Для самых простых систем эти вычисления можно эффективно выполнить. Таблица I дает апостериорные вероятности для шифра Цезаря, примененного к английскому тексту, причем ключ выбирался случайно из 26 возможных ключей. Для того чтобы можно было использовать обычные таблицы частот букв, диграмм и триграмм, текст был начат в случайном месте (на страницу открытой наугад книги был случайно опущен карандаш). Сообщение, выбранное таким способом, начинается с «creases to» (карандаш опущен на третью букву слова increases). Если известно, что сообщение начинается не с середины, а с начала некоторого предложения, то нужно пользоваться иной таблицей, соответствующей частотам букв, диграмм и триграмм, стоящих в начале предложения. (см. скан) Шифр Цезаря со случайным ключом является чистым, и выбор частного ключа не влияет на апостериорные вероятности. Чтобы определить эти вероятности, надо просто выписать возможные расшифровки с помощью всех ключей и вычислить их априорные вероятности. Апостериорные вероятности получатся из этих последних в результате деления их на их сумму. Эти возможные расшифровки, образующие остаточный класс этого сообщения, найдены с помощью стандартного процесса последовательного «пробегания алфавита», в таблице I они даны слева. Для одной перехваченной буквы апостериорные вероятности равны априорным вероятностям для всех букв (они приведены в таблице под рубрикой Для двух перехваченных букв эти вероятности равны априорным вероятностям диграмм, пронормированным на их сумму (они приведены в столбце
Заметим, что для трех букв число возможных сообщений снижается до четырех сообщений достаточно высокой вероятности, причем вероятности всех других сообщений малы по сравнению с вероятностями этих четырех сообщений. Для четырех букв имеются два возможных сообщения и для пяти — только одно, а именно правильная дешифровка. В принципе это может быть проведено для любой системы, однако в том случае, когда объем ключа не очень мал, число возможных сообщений настолько велико, что вычисления становятся практически невыполнимыми. Получаемое таким образом множество апостериорных вероятностей описывает, как постепенно, по мере получения зашифрованного материала, становятся более точными сведения шифровальщика противника относительно сообщения и ключа. Это описание, однако, является слишком исчерпывающим и слишком сложным для наших целей. Хотелось бы иметь упрощенное описание такого приближения к единственности возможного решения. Аналогичная ситуация возникает в теории связи, когда передаваемый сигнал искажается шумом. Здесь необходимо ввести подходящую меру неопределенности того, что действительно было передано, при условии, что известен только искаженный шумом вариант — принятый сигнал. В «Математической теории связи» показано, что естественной математической мерой этой неопределенности является условная энтропия передаваемого сигнала при условии, что принятый сигнал известен. Эта условная энтропия для удобства будет называться ненадежностью. С криптографической точки зрения секретная система почти тождественна системе связи при наличии шума. На сообщение (передаваемый сигнал) действует некоторый статистический элемент (секретная система с ее статистически выбранным ключом). В результате получается криптограмма (аналог искаженного сигнала), подлежащая дешифрированию. Основное различие заключается в следующем: во-первых, в том, что преобразование при помощи шифра имеет обычно более сложную природу, чем возникающее за счет шума в канале; и, во-вторых, ключ в секретной системе обычно выбирается из конечного множества, в то время как шум в канале чаще является непрерывным, выбранным по существу из бесконечного множества. Учитывая эти соображения, естественно использовать ненадежность в качестве теоретической меры секретности. Следует отметить, что имеются две основные ненадежности: ненадежность ключа и ненадежность сообщения. Они будут обозначаться через
где
Суммирование в чтобы получить скорость ненадежности, которая рассматривалась в работе «Математическая теория связи». Те же самые рассуждения, которые были использованы в «Математической теории связи» для обоснования введения ненадежности в качестве меры неопределенности в теории связи, применимы и здесь. Так, из того, что ненадежность равна нулю, следует, что одно сообщение (или ключ) имеет единичную вероятность, а все другие — нулевую. Этот случай соответствует полной осведомленности шифровальщика. Постепенное убывание ненадежности с ростом N соответствует увеличению сведений об исходном ключе или сообщении. Кривые ненадежности сообщения и ключа, нанесенные на график как функции от Величины
|
1 |
Оглавление
|