Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2. Обнаружение сигналовДля наглядности изложения введем основные понятия и характеристики оптимального обнаружения, иллюстрируя их на простейшем примере. Предположим, что на интервале наблюдения (обработки) Достоверному обнаружению сигнала мешает наличие шума (рис. 4.1, б), в смеси с которым наблюдается сигнал (когда он присутствует). Следовательно, по реализациям, содержащим смесь сигнала с шумом (рис. 4.1, в) или только шум, необходимо установить факт присутствия сигнала. Таким образом, процедура обнаружения сводится к обработке реализаций случайной функции
В каждой из этих реализаций возможно наличие или отсутствие обнаруживаемого сигнала. Будем обозначать случайные функции и случайные величины большими (заглавными) буквами Достаточно полной статистической характеристикой случайной функции распределения. Она вводится следующим образом. Рассматриваются значения случайной функции в дискретные моменты времени Совместная плотность распределения этих случайных величин
Рис. 4.1. Степень детализации случайного процесса, которая имеет место при описании его Совокупность значений Использование многомерных распределений для обнаружения позволяет получить обозримые результаты и технически реализуемые обнаружители лишь при определенных ограничениях, которым должна удовлетворять обрабатываемая случайная последовательность. В большинстве случаев эти ограничения не обременительны для практических приложений. Одним из таких ограничений может явиться требование нормальности случайных величин В дальнейшем будем полагать, что такая независимость имеет место. Тогда при наличии сигнала
а при отсутствии сигнала
Следовательно, многомерные плотности распределения достаточно просто выражаются через одномерные. В статистической радиотехнике, которая использует аппарат математической статистики, выводы о наличии сигнала и его параметрах делаются на основе принятых реализаций и соответствующих им выборок. Хотя эти реализации и содержат всю информацию об интересующих нас явлениях, получить такую информацию непосредственно из реализации или выборкичасто не представляется возможным. Они должны подвергнуться обработке (анализу). Важным элементом этого анализа является получение некоторых усредненных характеристик выборки. Весьма продуктивной и в ряде случаев оптимальной будет обработка выборки на основе использования функции правдоподобия и отношения правдоподобия. В математической статистике [22] функция правдоподобия формируется из многомерной плотности распределения (4.4.2) случайных величин путем замены в ней независимых переменных В задачах обнаружения функции правдоподобия при наличии и отсутствии сигнала будут равны соответственно
Обычно в литературе не делают различий в обозначениях аргументов функций распределения (4.4.2), (4.4.3) и числовых данных каждой конкретной выборки (4.4.4), (4.4.5), что нередко приводит к недоразумениям. Поэтому в дальнейшем выборочные данные, представляющие набор случайных чисел и функций от них, которые также являются случайными числами на совокупности выборок, будут снабжаться индексом Величина функции правдоподобия для каждой конкретной выборки характеризует, какое из двух событий
называемое отношением правдоподобия, с порогом По соображениям, которые станут ясными из дальнейшего, предпочитают сравнивать с порогом не само значение
где Процесс обнаружения сводится к следующему. Для каждой реализации вычисляется логарифм отношения правдоподобия и сравнивается с порогом С. Если оказывается, что При сравнительно малых отношениях сигнал/шум, а также вследствие случайности принимаемых реализаций логарифм отношения правдоподобия является случайной величиной и возможно выполнение неравенства При низком пороге пропуски сигнала будут практически отсутствовать, но сильно поднимется процент ложных тревог. Завышение порога увеличит число пропусков сигнала при уменьшении ложных тревог. Интуитивно чувствуется, что существует оптимальное значение порога. Такое значение действительно имеется, причем оно зависит от ряда условий, и в частности от критерия, положенного в основу построения оптимального обнаружителя. Выбор того или иного критерия оптимальности системы, в том числе и для систем обнаружения сигналов, является в значительной степени субъективным актом, т. е. критерий не выводится из теории, а назначается волевым приемом, исходя из особенностей функционирования конкретной оптимизируемой системы. Разумность и ценность принятого критерия качества работы системы проверяется на практике. Так, установлено, что для оптимизации обнаружителей радиолокационных станций целесообразно использовать критерий Неймана — Пирсона, а для систем связи более подходит критерий идеального наблюдателя. При использовании критерия Неймана — Пирсона задается уровень ложных тревог и требуется, чтобы вероятность обнаружения при этом была бы максимальной. Критерий идеального наблюдателя требует, чтобы суммарная ошибка, вызванная как ложными тревогами, так и пропуском сигнала, была минимальной. После того, как критерий принят, определяется оптимальное значение порога С на основании требований данного критерия и устанавливается структура оптимального обнаружителя. Логарифм отношения правдоподобия Обозначим через
а вероятность пропуска сигнала —
Полученным результатам можно дать наглядное геометрическое представление (рис. 4.2). Здесь изображены плотности распределения случайной величины V (логарифма отношения правдоподобия) соответственно при отсутствии и наличии сигнала. Вероятность ложной тревоги
Рис. 4.2, Очевидно, что вероятность правильного обнаружения
Эта вероятность определяется как площадь под кривой Как следует из приведенного рисунка, с увеличением порогового уровня уменьшается вероятность ложной тревоги, но одновременно уменьшается и вероятность правильного обнаружения. При снижении порога картина будет обратной. Для вычисления вероятностей
т. е. при таком подходе к определению Проведенный анализ показывает, что путем вычисления отношения правдонодобия удалось преобразовать Если преобразование осуществляется так, что не происходит потери информации, содержащейся в исходной выборке, то оно называется достаточным, а полученная в результате его случайная величина — достаточной статистикой. Отношение правдоподобия является достаточной статистикой. Оптимальность критерия Неймана — Пирсона состоит в том, что при его использовании оперируют с достаточными статистиками (отношением правдоподобия), и выявляется лишь при сравнении с другими процедурами обработки, не приводящими к достаточным статистикам. Такое сравнение показывает, что при заданном уровне ложных тревог процедура Неймана — Пирсона дает наибольшую вероятность правильного обнаружения. Пороговое значение
в котором заданы вид плотности распределения Для определения порогового уровня Сии при использовании критерия идеального наблюдателя необходимо вычислить вероятность полной ошибки
где Для нахождения порога
Решая это уравнение относительно порога, находят значение С принципиальной точки зрения критерий идеального наблюдателя кажется более содержательным в сравнении с критерием Неймана — Пирсона, так как в нем учитывается прошлый опыт, отраженный в величинах априорных вероятностей
Этот частный случай критерия идеального наблюдателя иногда называют критерием максимального правдоподобия. Условие (4.4.16) означает, что порог должен соответствовать точке пересечения кривых Общим для этих критериев является то, что процедуры обнаружения при использовании каждого из них строятся на основе вычисления отношения правдоподобия. Это обстоятельство обусловлено тем, что они входят в качестве подклассов в более общий так называемый байесовский критерий или, как его еще именуют, критерий минимума среднего риска. Байесовское обнаружение, разработанное в теории статистических решений, состоит в том, что помимо выборки и априорных вероятностей Поскольку задать обоснованные величины потерь для реальных ситуаций очень трудно, практическая ценность байесовского критерия невелика. Однако он позволяет в теоретическом плане более четко обосновать оптимальность всех процедур обнаружения, построенных на основе вычисления отношения правдоподобия. Для построения структурных схем обнаружителей, использующих приведенные выше критерии, и получения данных о качестве работы этих обнаружителей необходимо задаться конкретным видом плотностей распределения При переходе к непрерывному процессу обработки многомерные условные плотности распределения
Если сигнал обнаруживается в белом шуме, имеющем спектральную плотность
Здесь
для критерия Неймана — Пирсона и
для критерия идеального наблюдателя. Здесь На основании (4.4.18) получается структурная схема оптимального обнаружителя, показанная на рис. 4.3. Основные операции, выполняемые в обнаружителе подобного типа, сводятся к следующим. Принимаемая смесь сигнала с шумом или один шум умножаются в устройстве
Рис. 4.3. с коэффициентом передачи В момент окончания интегрирования на выходе звена
который сравнивается в пороговом устройстве с напряжением Величины пороговых напряжений ипин и
Напряжение
при наличии сигнала
Вычисление вероятностей ложной тревоги
Здесь При расчетах по формулам (4.4.26) и (4.4.27) пороговый уровень Для облегчения расчетов по формулам (4.4.22), (4.4.23) (4.4.26) и (4.4.27) разработаны таблицы и графики [71]. Схема на рис. 4.3 отображает оптимальный обнаружитель корреляционного типа или, как его еще называют, корреляционный приемник. Можно показать, что эта схема эквивалентна по качественным показателям обнаружения схеме с согласованным фильтром (рис. 4.4). Согласованный фильтр задается весовой функцией
Рис. 4.4. Выбор схемы обнаружителя в форме корреляционного приемника или согласованного фильтра диктуется лишь удобствами конструирования. Практически разработанные системы обнаружения часто еще далеки по своим свойствам от рассмотренных выше оптимальных обнаружителей. Это объясняется рядом причин, которые условно можно разбить на две группы. Первую группу составляют те, которые вызваны изменением условий, принимаемых при синтезе оптимального обнаружителя, относительно обнаруживаемых сигналов и помех, в силу следующих обстоятельств: помеховое воздействие не может быть сведено к белому шуму; в месте приема не известна фаза принимаемого колебания; производится прием флуктуирующего сигнала; не известно положение принимаемого сигнала на оси времени и т. д. Вторая группа вызвана отказом от применения тех элементов оптимальной схемы, которые сложны в технических реализациях. Ухудшения предельных показателей, вызванных перечисленными причинами, принято характеризовать потерями чувствительности обнаружителя. Небелый гауссов шум будем характеризовать нулевым средним значением и корреляционной функцией Наиболее известными являются два подхода к вычислению отношения правдоподобия, которым соответствуют две формы структурной схемы оптимального обнаружителя. Первый метод состоит в том, что отношение правдоподобия вычисляется непосредственно на основе многомерных плотностей распределения коррелированных случайных величин При втором подходе случайную функцию Рассмотрим основные результаты, которые дают два упомянутых подхода к синтезу оптимальных обнаружителей. Наибольшая сложность, возникающая при вычислении многомерной плотности распределения статистически зависимых случайных величин, состоит в нахождении матрицы
где Основные трудности в решении уравнения (4.4.28) вызывают конечные пределы интегрирования. Если уравнение (4.4.28) решено и определена
Рис. 4.5. Если шум белый, т. е. Для удобства построения структурной схемы обнаружителя введем функцию
Тогда
Если принять, что функция Напряжение
сравнивается в пороговом устройстве
Показателями достоверности работы обнаружителя по-прежнему являются вероятности ложной тревоги и правильного обнаружения, которые вычисляются по формулам (4.4.26) и (4.4.27). Соотношение (4.4.33) показывает, что достоверность обнаружения теперь зависит от формы сигнала. Напомним, что при обнаружении сигнала в белом шуме величина Функция
Возможно также построение оптимального обнаружителя сигнала в коррелированном шуме по схеме с согласованным фильтром. Весовая функция такого фильтра вычисляется по виду обобщенного сигнала В работе [184] показано, что если интегрирование производится в бесконечных пределах или же когда спектральная плотность помехи описывается дробно-рациональной функцией частоты Структура согласованного фильтра при коррелированном шуме такова, что этот фильтр ослабляет в большей степени те спектральные составляющие принимаемой реализации, частоты которых соответствуют частотам наибольшей интенсивности в спектре шума. Процесс оптимального обнаружения сигнала в коррелированном шуме, основанный на переходе к статистически независимым выборочным значениям, в случае непрерывной обработки реализации сводится к введению в схему обнаружителей так называемого отбеливающего фильтра. Структурная схема подобного обнаружителя представлена на рис. 4.6. Реализация на выходе отбеливающего фильтра
Рис. 4.6.
Для сохранения необходимых соотношений между преобразованной реализацией и опорным сигналом на обоих входах умножителя Для нахождения параметров отбеливающего фильтра положим, что на его вход подано лишь шумовое воздействие
Таким образом, для нахождения структуры отбеливающего фильтра необходимо решить интегральное уравнение (4.4.35). Это решение зависит исключительно от вида корреляционной функции входного шума. Если длительность обрабатываемой реализации
Отсюда находим выражение для комплексного коэффициента передачи фильтра
Рассмотренная ранее задача, в которой при приеме были точно известны амплитуда и начальная фаза обнаруживаемого сигнала, на практике не встречается и принятое условие является удобной математической абстрацией, служащей для получения предельных значений достоверности обнаружения. Реальные условия приема радиосигналов намного сложнее. Первое приближение к таким условиям соответствует случаю, когда в точке приема точно известны частота полезного сигнала и его положение на оси времени с точностью до периода высокочастотных колебаний, а неизвестными являются начальная фаза и амплитуда. Применительно к радиолокационным задачам подобная ситуация характеризует обнаружение отраженного от цели сигнала при неизменном и заранее известном расстоянии между целью и точкой приема. Предполагается также, что частота передатчика РЛС абсолютно стабнльна или влияние нестабильности исключается путем запоминания частоты излучаемого сигнала до момента прихода отраженного импульса. Если какой-либо параметр сигнала точно неизвестен, а заданы лишь его статистические характеристики, то теория оптимальных методов приема рекомендует для этого случая два различных подхода. Согласно первому неизвестный параметр должен быть измерен, т. е. получена его оптимальная оценка, и в схему обнаружителя вводится сигнал, который вместо неизвестного параметра содержит оценку этого параметра. Такая рекомендация приводит к получению достаточно сложных схем с одновременным обнаружением и измерением (23, 164, 98]. Однако если влияние неизвестных параметров на достоверность обнаружения невелико, такое усложнение нецелесообразно. В этом случае предпочтителен другой подход, в соответствии с которым необходимо усреднить отношение правдоподобия по неизвестным параметрам и тем самым исключить их из структуры оптимального обнаружителя. Этот подход основан на не совсем точной концепции, состоящей в том, что неизвестные параметры не несут информации об обнаруживаемом сигнале. Такие параметры часто называют неннформативными и даже паразитными [52], из чего следует необходимость указанного выше усреднения. Второй подход считается более традиционным при синтезе оптимальных обнаружителей. Следующим этапом приближения к реальным условиям работы обнаружителя является принятие допущения о неизвестной несущей частоте сигнала и неизвестном положении его на оси времени. Частота сигнала бывает неизвестна в силу нестабильности частоты передатчика, а также из-за наличия допплеровского смещения частоты, вызванного взаимным перемещением пунктов передачи и приема. Отсутствие данных о расстоянии между радиолокационной станцией и целью, а также между двумя корреспондентами в системе связи приводит к тому, что становится неизвестным положение сигнала на оси времени. В теоретическом плане задача сводится к так называемому сложному или многоальтернативному обнаружению. Оптимальный обнаружитель в этом случае строится в виде многоканальной схемы. Возможный диапазон задержек сигнала разбивается на интервалы, каждый из которых соответствует одному элементу разрешения цели по дальности. Для каждого такого интервала строится оптимальный обнаружитель. Отметим, что в таком многоканальном обнаружителе осуществляется процедура обнаружения и измерения, так как появление сигнала в том или ином канале позволяет установить по номеру канала временную задержку сигнала, а следовательно, и дальность до цели. Аналогично строится и многоканальная схема с частотным разделением каналов, если неизвестна частота сигнала. Теория оптимального обнаружения сигналов, основанная на анализе отношений правдоподобия, предполагает известными распределения вероятностей принимаемых реализаций. Вид закона распределения вероятностей определяет структуру обнаружителя, а знание параметров этого закона позволяет рассчитать величину порога, необходимую для получения требуемой достоверности обнаружения. В математической статистике методы, в которых для получения статистических выводов необходимо знание законов распределения анализируемых процессов, называют параметрическими. Несмотря на широкое применение параметрических методов в статистической радиотехнике, их использование может натолкнуться на трудности принципиального характера, что наблюдается, например, при недостатке статистических данных в описании процессов на входе радиотехнического устройства или при изменении таких данных во времени непредсказуемым образом. Простейшей, но весьма характерной ситуацией подобного рода является возрастание интенсивности шумов на выходе приемника, вызванное либо увеличением коэффициента его усиления, либо действием широкополосных шумовых помех. Если параметры обнаружителя оставить неизменными, то это приведет к повышению вероятности ложной тревоги. Для стабилизации уровня ложной тревоги в рассмотренные выше обнаружители параметрического типа вводят дополнительный канал приема, в котором осуществляется оценка интенсивности шумов. В радиолокационных устройствах такой канал может быть выполнен дополнительным стробированием приемника на дистанции (временном интервале), где заведомо отсутствует сигнал цели. Измеренное значение интенсивности шумов используется либо для изменения порога, либо для нормировки шумов. Некоторые алгоритмы стабилизации ложных тревог путем изменения порога приведены в 182, 179]. Теоретическое обоснование нормирования шумов в оптимальном обнаружителе с неизвестной их интенсивностью дает правило, называемое Основной недостаток рассмотренных схем стабилизации ложных тревог состоит в том, что получаемая в таких схемах оценка интенсивности шумов отличается от ее истинного значения на величину ошибки измерения, к которой очень чувствительны обнаружители параметрического типа. Например, в [62] показано, что ошибка измерения среднего уровня шумов, составляющая 10%, вызывает изменение вероятности ложной тревоги приблизительно на порядок. Отмеченная особенность, а также чувствительность подобных обнаружителей к изменению вида закона распределения помех послужили причиной разработки обнаружителей непараметрического типа, для построения которых требуются очень ограниченные сведения о распределениях анализируемых реализаций. Непараметрическая теория решений позволяет получать алгоритмы (на основе которых делаются статистические выводы), инвариантные к форме закона распределения. Однако в практическом приложении этой теории применительно к обнаружению сигналов вопрос так широко не ставится. Обычно под непараметрическим обнаружением понимают алгоритм, который обеспечивает независимость от формы закона распределения какой-либо характеристики качества обнаружения. Такой характеристикой чаще всего бывает уровень ложных тревог. Следовательно, в непараметрических обнаружителях обеспечивается стабилизация ложных тревог при изменении условий приема. Это свойство приобретается ценой потери оптимальности. Однако показатели качества подобных обнаружителей могут быть сделаны достаточно близкими к оптимальным [12]. Простейшим обнаружителем непараметрического типа является знаковый обнаружитель [12, 52]. Этот обнаружитель строится на основе следующих предположений относительно статистических свойств принятых реализаций. Если сигнал отсутствует и реализация Алгоритм работы знакового обнаружителя получается следующим образом. Анализируемая реализация квантуется на два уровня
Затем формируется сумма этих выборочных значений, которая сравнивается с порогом
Величина порога Одной из разновидностей знакового обнаружителя является так называемый фазовый автокоррелятор [179], функциональная схема которого представлена на рис. 4.7. Широкополосный и узкополосный фильтры (ШФ и УФ)
Рис. 4.7. настроены на частоту сигнала. Полоса пропускания Напряжение с выходов фильтров подаются на ограничители
|
1 |
Оглавление
|