Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3. Теоретические аспекты инженерии знаний- Поле знаний - Стратегии получения знаний - Теоретические аспекты извлечения знаний - Теоретические аспекты структурирования знаний 3.1. Поле знанийИнженерия знания — достаточно молодое направление искусственного интеллекта, появившееся тогда, когда практические разработчики столкнулись с весьма нетривиальными проблемами трудности «добычи» и формализации знаний. В первых книгах по ИИ эти факты обычно только постулировались, в дальнейшем начались серьезные исследования по выявлению оптимальных стратегий выявления знаний [Boose, 1990; Wielinga, Schreiber, Breuker, 1992; Tuthill, 1994; Adeli, 1994]. Данная глава целиком посвящена теоретическим проблемам инженерии знаний, другими словами — проектированию баз знаний — получению и структурированию знаний специалистов для последующей разработки баз знаний. Центральным понятием на стадиях получения и структурирования является так называемое поле знаний, уже упоминавшееся в параграфе 1.3. Поле знаний — это условное неформальное описание основных понятий и взаимосвязей между понятиями предметной области, выявленных из системы знаний эксперта, в виде графа, диаграммы, таблицы или текста. 3.1.1. О языке описания поля знанийПоле знаний Поле знаний, как первый шаг к формализации, представляет модель знаний о предметной области, в том виде, в каком ее сумел выразить аналитик на некотором «своем» языке. Что это за язык? Известно, что словарь языка конкретной науки формируется путем пополнения общеупотребительного языка специальными терминами и знаками, которые либо заимствуются из повседневного языка, либо изобретаются [Кузичева, 1987]. Назовем этот язык Во-первых, как и в языке любой науки, в нем должно быть как можно меньше неточностей, присущих обыденным языкам. Частично точность достигается более строгим определением понятий. Идеалом точности, конечно, является язык математики. Язык, видимо, занимает промежуточное положение между естественным языком и языком математики. Во-вторых, желательно не использовать в нем терминов иных наук в другом, то есть новом, смысле. Это вызывает недоразумения. В-третьих, Язык При выборе Языка описания поля знаний не следует забывать, что на стадии формализации необходимо его заменить на машинно-реализуемый язык представления знаний (ЯПЗ), выбор которого зависит от структуры поля знаний. Существует ряд языков, достаточно универсальных, чтобы претендовать на роль языка инженерии знаний, — это структурно-логический язык SLL, включающий аппарат лямбда-конверсии [Вольфенгаген и др., 1979], язык К-систем [Кузнецов, 1989], УСК [Мартынов, 1977] и др. Однако они не нашли широкого применения. В некотором смысле создание языка Представители естественных наук еще не до конца осознали достоинства семиотики только из-за того, что имеют дело с достаточно простыми и «жесткими» предметными областями. Им хватает аппарата традиционной математики. В инженерии знаний, однако, мы имеем дело с «мягкими» предметными областями, где явно не хватает выразительной адекватности классического математического аппарата и где большое значение имеет эффективность нотации (ее компактность, простота модификации, ясность интерпретации, наглядность и т. д.). В главе 8 рассматриваются современные тенденции в этой области и вводится понятие онотологического инжиниринга, как одного из подходов к семиотическому моделированию предметной области. Языки семиотического моделирования [Осипов, 1988; Поспелов, 1986] как естественное развитие языков ситуационного управления являются, как нам кажется, первым приближением к языку инженерии знаний. Именно изменчивость и условность знаков делают семиотическую модель применимой к сложным сферам реальной человеческой деятельности. Поэтому главное на стадии концептуализации — сохранение естественной структуры поля знаний, а не выразительные возможности языка. Традиционно семиотика включает (рис. 3.1): • синтаксис (совокупность правил построения языка или отношения между знаками); • семантику (связь между элементами языка и их значениями или отношения между знаками и реальностью); • прагматику (отношения между знаками и их пользователями). Рис. 3.1. (см. скан) Структура семиотики
|
1 |
Оглавление
|