Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.3. Представление знаний и вывод на знаниях1.3.1. Данные и знанияПри изучении интеллектуальных систем традиционно возникает вопрос — что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ. Можно предложить несколько рабочих определений, в рамках которых это становится очевидным. Данные — это отдельные факты, характеризующие объекты, процессы и явления предметной области, а также их свойства. При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы: 1. D1 — данные как результат измерений и наблюдений; 2. D2 — данные на материальных носителях информации (таблицы, протоколы, справочники); 3. D3 — модели (структуры) данных в виде диаграмм, графиков, функций; 4. D4 — данные в компьютере на языке описания данных; 5. D5 — базы данных на машинных носителях информации. Знания основаны на данных, полученных эмпирическим путем. Они представляют собой результат мыслительной деятельности человека, направленной на обобщение его опыта, полученного в результате практической деятельности. Знания — это закономерности предметной области (принципы, связи, законы), полученные в результате практической деятельности и профессионального опыта, позволяющие специалистам ставить и решать задачи а этой области. При обработке на ЭВМ знания трансформируются аналогично данным. 1. Z1 — знания в памяти человека как результат мышления; 2. Z2 — материальные носители знаний (учебники, методические пособия); 3. Z3 — поле знаний — условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих; 4. Z4 — знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы — см. далее); 5. Z5 — база знаний на машинных носителях информации. Часто используется такое определение знаний. Знания — это хорошо структурированные данные, или данные о данных, или метаданные. Существует множество способов определять понятия. Один из широко применяемых способов осрован на идее интенсионала. Интенсивная понятия — это определение его через соотнесение с понятием более высокого уровня абстракции с указанием специфических свойств. Интенсионалы формулируют знания об объектах. Другой способ определяет понятие через соотнесение с понятиями более низкого уровня абстракции или перечисление фактов, относящихся к определяемому объекту. Это есть определение через данные, или экстенсивная понятия. Пример 1.1 Понятие «персональный компьютер». Его интенсионал: «Персональный компьютер это дружественная ЭВМ, которую можно поставить на стол и купить менее чем за Экстенсионал этого понятия: «Персональный компьютер — это Mac, IBM PC, Sinkler...» Для хранения данных используются базы данных (для них характерны большой объем и относительно небольшая удельная стоимость информации), для хранения знаний — базы знаний (небольшого объема, но исключительно дорогие информационные массивы). База знаний — основа любой интеллектуальной системы. Знания могут быть классифицированы по следующим категориям: • Поверхностные — знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области. • Глубинные — абстракции, аналогии, схемы, отображающие структуру и природу процессов, протекающих в предметной области. Эти знания объясняют явления и могут использоваться для прогнозирования поведения объектов. Пример 1.2 Поверхностные знания: «Если нажать на кнопку звонка, раздастся звук. Ест болит голова, то следует принять аспирин. Глубинные знания: «Принципиальная электрическая схема зввонка и проводки. Знания физиологов и врачей высокой квалификации о причинах, видах головных болей и методах их лечения». Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет универсальных методик, позволяющих выявлять глубинные структуры знаний и работать с ними. Кроме того, в учебниках по ИИ знания традиционно делят на процедурные и декларативные. Исторически первичными были процедурные знания, то есть знания, «растворенные» в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием искусственного интеллекта приоритет данных постепенно изменялся, и все большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), то есть увеличивалась роль декларативных знаний. Сегодня знания приобрели чисто декларативную форму, то есть знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и пощгных неспециалистам.
|
1 |
Оглавление
|