Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.1.2. Методы многомерного шкалированияВ дальнейшем развитие методов психосемантики шло по линии разработки удобных пакетов прикладных программ, основанных на методах многомерного шкалирования (МШ), факторного анализа, а также специализированных методов (статистической) обработки репертуарных решеток [Франселла, Баннистер, 1987]. Примерами пакетов такого типа являются системы KELLY [Похилько, Страхов, 1990], MADONNA [Терехина, 1988], MEDIS [Алексеева, Воинов и др., 1989]. С другой стороны, специфика ряда конкретных приложений, прежде всего — в инженерии знаний, требовала также развития иных (не численных) методов обработки психосемантических данных, использующих — в той или иной форме — парадигму логического вывода на знаниях. Ярким примером этого направления служит система AQUINAS [Boose et al., 1989; Boose, 1990]. Однако анализ практического применения систем обоих типов к задачам инженерии знаний приводит к выводу о несовершенстве имеющихся методик и необходимости их развития в соответствии с современными требованиями инженерии знаний. Наибольшие перспективы в этой области, по-видимому, у методов многомерного шкалирования). Многомерное шкалирование (МШ) сегодня — это математический инструментарий, предназначенный для обработки данных о попарных сходствах, связях или отношениях между анализируемыми объектами с целью представления этих объектов в виде точек некоторого координатного пространства. МШ представляет собой один из разделов прикладной статистики, научной дисциплины, разрабатывающей и систематизирующей понятия, приемы, математические методы и модели, предназначенные для сбора, стандартной записи, систематизации и обработки статистических данных с целью их лаконичного представления, интерпретации и получения научных и практических выводов. Традиционно МШ используется для решения трех типов задач: 1. Поиск и интерпретация латентных (то есть скрытых, непосредственно не наблюдаемых) переменных, объясняющих заданную структуру попарных расстояний (связей, близостей). 2. Верификация геометрической конфигурации системы анализируемых объектов в координатном пространстве латентных переменных. 3. Сжатие исходного массива данных с минимальными потерями в их информативности. Независимо от задачи МШ всегда используется как инструмент наглядного представления (визуализации) исходных данных. МШ широко применяется в исследованиях по антропологии, педагогике, психологии, экономике, социологии [Дэйвисон, 1988]. В основе данного подхода лежит интерактивная процедура субъективного шкалирования, когда испытуемому (то есть эксперту) предлагается оценить сходство между различными элементами П с помощью некоторой градуированной шкалы (например, от 0 до 9, или от -2 до +2). После такой процедуры аналитик располагает численно представленными стандартизованными данными, поддающимися обработке существующими пакетами прикладных программ, реализующими различные алгоритмы формирования концептов более высокого уровня абстракции и строящими геометрическую интерпретацию семантического пространства в евклидовой системе координат. Основной тип данных в МШ — меры близости между двумя объектами МШ использует дистанционную модель различия, используя понятие расстояния в геометрии как аналогию сходства и различия понятий (рис. 5.3). Для того чтобы функция
Тогда, согласно обычной формуле евклидова расстояния, мера различия двух объектов
Рис. 5.3. Расстояние в евклидовой метрике Дистанционная модель была многократно проверена в социологии и психологии [Monahan, Lockhead, 1977; Петренко, 1988; Шмелев, 1983], что дает возможность оценить ее пригодность для использования. В большинстве работ по МШ используется матричная алгебра. Геометрическая интерпретация позволяет представить абстрактные понятия матричной алгебры в конкретной графической форме. Для облегчения интерпретации решения задачи МШ к первоначально оцененной матрице координат стимулов X применяется вращение. Среди множества алгоритмов МШ широко используются различные модификации метрических методов Торгерсона [Torgerson, 1958], а также неметрические модели, например Крускала [Kruskal, 1964]. При сравнении методов МШ с другими методами анализа, теоретически применимыми в инженерии знаний (иерархический кластерный анализ [Дюран, Оделл, 1977] или факторный анализ [Иберла, 1980]), МШ выигрывает за счет возможности дать наглядное количественное координатное представление, зачастую более простое и поэтому легче интерпретируемое экспертами.
|
1 |
Оглавление
|