Главная > Базы знаний интеллектуальных систем
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

9. Интеллектуальные Интернет-технологии

- Программные агенты и мультиагентные системы

- Проектирование и реализация агентов и мультиагентных систем

- Информационный поиск в среде Интернет

9.1. Программные агенты и мультиагентные системы

9.1.1. Историческая справка

Проблематика интеллектуальных агентов и мультиагентных систем (MAC) имеет уже почти -летнюю историю [Городецкий и др., 1998; Тарасов, 1998] и сформировалась на основе результатов, полученных в рамках работ по распределенному искусственному интеллекту (DAI), распределенному решению задач (DPS) и параллельному искусственному интеллекту (PAI) [Demazeau et al., 1990; Пэранек, 1991; Rasmussen et al., 1991]. Но, пожалуй, лишь в последнее -летие она выделилась в самостоятельную область исследований и приложений и все больше претендует на одну из ведущих ролей в рамках интеллектуальных информационных технологий. Спектр работ по данной тематике весьма широк, интегрирует достижения в области компьютерных сетей и открытых систем, искусственного интеллекта и информационных технологий и ряда других исследований, а результаты уже сегодня позволяют говорить о новом качестве получаемых решений.

Понятно, что в рамках данного издания мы не сможем даже обозреть все направления и результаты в области MAC. Поэтому далее сконцентрируемся лишь на тех разделах, которые имеют непосредственное отношение к теме настоящей книги. С учетом сделанных замечаний и с позиций сегодняшнего дня все исследования в этой области можно выделить в две основные фазы: первая охватывает период с 1977 г. по настоящее время, а вторая — с начала 1990 г. по настоящее время.

Работы первого периода концентрировались на исследовании так называемых «смышленых» (smart) агентов, которые были начаты в конце 1970-х годов и продолжаются все 1980-е годы вплоть до наших дней. Первоначально эти работы были сосредоточены на анализе принципов взаимодействия между агентами, на декомпозиции решаемых задач на подзадачи и распределении полученных задач между отдельными агентами, координации и кооперации агентов, разрешении конфликтов путем переговоров и т. п. Цель таких работ — анализ, спецификация, проектирование и реализация систем агентов. На этом же уровне активно велись работы по теории, архитектурам и языкам для программной реализации агентов.

Примерно с 1990 г. стало ясно, что программные агенты могут использоваться в широком спектре применений. Однако потенциал агентных технологий, по-видимому, стал в значительной мере осознан не только разработчиками) но и инвесторами после известного отчета консультативной фирмы Ovum [Ovum, 1994], которая предсказала, что сектор рынка для программных агентов в США и Европе вырастет, по крайней мере, до в противовес 1995 г., когда он оценивался в

В настоящее время множество исследовательских лабораторий, университетов, фирм и промышленных организаций работают в этой области, и список их постоянно расширяется. Он включает мало известные имена и небольшие коллективы, уже признанные исследовательские центры и организации (например, университет Карнеги Мэллон (CMU) и фирма General Magic), а также огромные транснациональные компании (такие как Apple, AT&T, ВТ, Daimler-Benz, DEC, HP, IBM, Lotus, Microsoft, Oracle, Sharp и др.). Областями практического использования агентных технологий являются управление информационными потоками (workflow management) и сетями (network management), управление воздушным движением (air-traffic control), информационный поиск (information retrieval), электронная коммерция (e-commerce), обучение (education), электронные библиотеки (digital libraries) и многие-многие другие приложения. Существует несколько причин, почему необходимы и полезны программные агенты, MAC и, более общо, агентные технологии. Основная из них в том, что агенты автономны и могут выполняться в фоновом (background) режиме от лица пользователя при решении разных задач, наиболее важными из которых являются сбор информации, ее фильтрация и использование для принятия решений. Таким образом, основная идея программных агентов — делегирование полномочий. Для того чтобы реализовать эту идею, агент должен иметь возможность взаимодействия со своим владельцем или пользователем для получения соответствующих заданий и возвращения полученных результатов, ориентироваться в среде своего выполнения и принимать решения, необходимые для выполнения поставленных перед ним задач.

К построению агентно-ориентированных систем можно указать два подхода: реализация единственного автономного агента или разработка мультиагентной системы. Автономный агент взаимодействует только с пользователем и реализует весь спектр функциональных возможностей, необходимых в рамках агентно-оривотированной

программы. В противовес этому MAC являются программно-вычислительными комплексами, где взаимодействуют различные агенты для решения задач, которые трудны или недоступны в силу своей сложности для одного агента. Часто такие мультиагентные системы называют агентствами (agencies), в рамках которых агенты общаются, кооперируются и договариваются между собой для поиска решения поставленной перед ними задачи.

Агентные технологии обычно предполагают использование определенных типологий агентов и их моделей, архитектур MAC и опираются на соответствующие агентные библиотеки и средства поддержки разработки разных типов мультиагентных систем.

9.1.2. Основные понятия

Существует несколько подходов к определению понятий в данной предметной области. По-видимому, одним из наиболее последовательных в этом вопросе является международная ассоциация FIPA (Foundation for Intelligent Physical Agents), каждый документ которой содержит толковый словарь терминов, релевантных данному документу [FIPA, 1998]. И вместе с тем практически во всех работах, где даются, например, определения понятия агента и его базисных свойств, общим местом стало замечание об отсутствии единого мнения по этому поводу [Franklin et al., 1996; BelgraVe, 1996; Nwana, 1996]. Фактически, используя понятие «агент», каждый автор или сообщество определяют своего агента с конкретным набором свойств в зависимости от целей разработки, решаемых задач, техники реализации и т. п. критериев. Как следствие, в рамках данного направления появилось множество типов агентов, например: автономные агенты, мобильные агенты, персональные ассистенты, интеллектуальные агенты, социальные агенты и т. д. [Nwana, 1996], а вместо единственного определения базового агента — множество определений производных типов.

Учитывая вышесказанное, понятие агента целесообразно трактовать как метаимя или класс, который включает множество подклассов. Ряд определений агентов, данных разными исследователями, представлен в работе [Franklin et al., 1996]. В настоящем издании будем придерживаться следующей концепции по этому поводу.

Агент — это аппаратная или программная сущность, способная действовать в интересах достижения целей, поставленных перед ним владельцем и/или пользователем [Wooldridge et al., 1995].

Таким образом, в рамках МАС-парадигмы программные агенты рассматриваются как автономные компоненты, действующие от лица пользователя.

В настоящее время существует несколько классификаций агентов [Nwana, 1996], одна из которых, представлена в табл. 9.1.

Таблица 9.1. (см. скан) Классификация агентов

Как следует из приведенной таблицы, собственно целесообразное поведение появляется только на уровне интеллектуальных агентов [Пономарева и др., 1999; Хорошевский, 1999]. И это не случайно, так как для него необходимо не только наличие целей функционирования, но и возможность использования достаточно сложных знаний о среде, партнерах и о себе. С точки зрения целей настоящей книги, наибольший интерес представляют интеллектуальные и действительно интеллектуальные (см. табл. 9.1) агенты. Понятно, что все характеристики более «простых» типов агентов при этом наследуются.

Иногда агентов определяют через свойства, которыми они должны обладать. Учитывая то, что нас в данной книге, в первую очередь, интересуют интеллектуальные агенты, приведем типовой список свойств, которыми такие агенты должны обладать [Wooldridge et al., 1995; FIPA, 1998]:

• автономность (autonomy, autonomious functioning) — способность функционировать без вмешательства со стороны своего владельца и осуществлять контроль внутреннего состояния и своих действий;

• социальное поведение (social ability, social behaviour) — возможность взаимодействия и коммуникации с другими агентами;

• реактивность (reactivity) — адекватное восприятие среды и соответствующие реакции на ее изменения;

• активность (pro-activity) — способность генерировать цели и действовать рациональным образом для их достижения;

• базовые знания (basic knowledge) — знания агента о себе, окружающей среде, включая других агентов, которые не меняются, в рамках жизненного цикла агента;

• убеждения (beliefs) — переменная часть базовых знаний, которые могут меняться во времени, хотя агент может об этом не знать и продолжать их использовать для своих целей;

• цели (goals) — совокупность состояний, на достижение которых направлено текущее поведение агента;

• желания (desires) — состояния и/или ситуации, достижение которых для агента важно;

• обязательства (commitments) — задачи, которые берет на себя агент по просьбе и/или поручению других агентов;

• намерения (intentions) — то, что агент должен делать в силу своих обязательств и/или желаний.

Иногда в этот же перечень добавляются и такие свойства, как рациональность (retionality), правдивость (veracity), благожелательность (benevolence), а также мобильность (mobility), хотя последнее характерно не только для интеллектуальных агентов.

В зависимости от концепции, выбранной для организации MAC, обычно выделяются три базовых класса архитектур [Wray et al., 1994; Wooldridge et. al., 1995; Nwana, 1996]:

• архитектуры, которые базируются на принципах и методах работы со знаниями (deliberative agent architectures);

• архитектуры, основанные на поведенческих моделях типа «стимул-реакция» reactive agent architectures);

• гибридные архитектуры hybrid architectures).

Наиболее «трудными» терминологически в этой триаде являются архитектуры первого типа. Прямая калька — делиберативные архитектуры — неудобна для русскоязычного произношения и не имеет нужной семантической окраски для русскоязычного читателя. Сам термин был введен в работе [Genesereth et al., 1987] при обсуждении архитектур агентов.

Архитектуру или агентов, которые используют только точное представление картины мира в символьной форме, а решения при этом (например, о действиях) принимаются на основе формальных рассуждений и использования методов сравнения по образцу, принято определять как делиберативные.

Таким образом, в данном случае мы имеем дело с «разумными» агентами и архитектурами, имеющими в качестве основы проектирования и реализации модели, методы и средства искусственного интеллекта. В работе [Тарасов, 1998] таких агентов предлагается называть когнитивными, что не вполне правильно, так как при этом неявно предполагается, что «рассуждающие» агенты познают мир, в котором они функционируют. Нам представляется, что для русского языка более

удобным и адекватным были бы термины «агент, базирующийся на знаниях» или «интеллектуальный агент», а также «архитектура интеллектуальных агентов». Именно этих терминов мы и будем придерживаться в данном издании. Первоначально идея интеллектуальных агентов связывалась практически полностью с классической логической парадигмой ИИ. Однако по мере развития исследований в этой области стало ясно, что такие «ментальные» свойства агентов, как, например, убеждения, желания, намерения, обязательства по отношению к другим агентам и т. п., невыразимы в терминах исчисления предикатов первого порядка. Поэтому для представления знаний агентов в рамках данной архитектуры были использованы специальные расширения соответствующих логических исчислений [Поспелов, 1998], а также разработаны новые архитектуры, в частности архитектуры типа BDI (Belief-Desire-Intention). Один из конкретных примеров архитектуры этого класса обсуждается ниже.

Принципы реактивной архитектуры возникли как альтернативный подход к архитектуре интеллектуальных агентов. Идея реактивных агентов впервые возникла в работах Брукса, выдвинувшего тезис, что интеллектуальное поведение может быть реализовано без символьного представления знаний, принятого в классическом ИИ [Brooks, 1991]. Таким образом [Connah, 1994]:

Реактивными называются агенты и архитектуры, где нет эксплицитно представленной модели мира, а функционирование отдельных агентов и всей системы осуществляется по правилам типа ситуация—действие. При этом под ситуацией понимается потенциально сложная комбинация внутренних и внешних состояний.

Вообще говоря, данный подход ведет свое начало с работ по планированию поведения роботов, которые активно велись в ИИ в 70-х годах. Простым примером реализации реактивных архитектур в этом контексте можно считать системы, где реакции агентов на внешние события генерируются соответствующими конечными автоматами. Широко известным примером системы с реактивной архитектурой является планирующая система STRIPS [Fikes et al., 1971], где использовался логический подход, расширенный за счет ассоциированных с действиями предусловий и пост-условий. Позже в рамках реактивных архитектур были разработаны и другие системы, но, как правило, они не могли справиться с задачами реального уровня сложности.

Учитывая вышесказанное, многие исследователи считают, что ни первый, ни второй подходы не дают оптимального результата при разработке агентов и MAC [Wray et al., 1994]. Поэтому попытки их объединения предпринимаются постоянно и уже привели к появлению разнообразных гибридных архитектур. По сути дела, именно гибридные архитектуры и используются в настоящее время во всех, сколько-нибудь значимых проектах и системах.

Мы рассмотрели основные подходы к разработке мультиагентных систем. Архитектуры MAC и их характеристики, широко используемые в настоящее время, представлены в табл. 9.2.

Таблица 9.2. (см. скан) Архитектуры MAC и их характеристики

Организация MAC на принципах ИИ имеет преимущества с точки зрения удобства использования методов и средств символьного представления знаний, разработанных в рамках искусственного интеллекта. Но в то же время создание точной и полной модели представления мира, процессов и механизмов рассуждения в нем представляют здесь существенные трудности, уже неоднократно обсуждавшиеся в данной книге в связи с рассмотрением вопросов приобретения знаний. Реактивный подход позволяет наилучшим образом использовать множество достаточно простых образцов поведения для реакции агента на определенные стимулы для конкретной предметной области. Однако применение этого подхода ограничивается необходимостью полного ситуативного анализа всех возможных активностей агентов.

Недостатки гибридных архитектур связаны с «непринципиальным» проектированием MAC. со всеми вытекающими отсюда последствиями. Так, например, многие гибридные архитектуры слишком специфичны для приложений, под которые они разрабатываются. Но несмотря на указанные недостатки, гибридные архитектуры позволяют гибко комбинировать возможности всех подходов. Вот почему в последнее время явно прослеживается тенденция разработки и использования именно гибридных МАС-архитектур и систем агентов [Sloman, 1996].

1
Оглавление
email@scask.ru