Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 86. Состав ядер. Изотопы. Атомные единицы массы и энергииИзучение масс-спектрограмм позволило устанавливать состав ядер. Это, однако, оказалось возможным только после того, как были открыты (в начале 30-х годов) нейтроны (§ 90) и выяснилось, что ядра состоят из протонов и нейтронов — незаряженных частиц, обладающих массой, близкой к массе протона, имеющих, так же как и протон и электрон, спин, равный В первый период развития ядерной физики считали, что ядра состоят из протонов и электронов и заряд ядра равен разности числа протонов и числа электронов. Однако по мере накопления экспериментальных данных стало выясняться, что такое представление о строении ядра находится в противоречии с опытом. Действительно, атомные ядра имеют магнитные моменты по порядку величины такие же, как у протона и нейтрона; это было бы необъяснимо, если предполагать, что внутри ядер находятся электроны, магнитные моменты которых в 1000 раз больше. Предположение о наличии электронов в ядрах противоречит также экспериментально наблюдаемым значениям их спинов. Советский ученый Д. Д. Иваненко на основании подобных соображений первый (в 1932 г.) установил, что электроны не входят в состав атомных ядер и что, стало быть, заряд ядра, как это общепризнано сейчас, полностью определяется числом протонов в ядре. Поскольку число протонов в ядре любого атома совпадает с атомным номером элемента, а массы протона и нейтрона различаются весьма мало, то, следовательно, число нейтронов в ядре дополняет атомный номер Атомные веса некоторых элементов, найденные химическим путем, иногда значительно отличаются от целого числа. Причина этого была вскрыта еще в 1919 г. Астоном при первых же исследованиях масс-спектрограмм таких элементов, а именно: Астон обнаружил, что элементы, атомные веса которых значительно отличаются от целых чисел, дают в масс-спектрограмме, по меньшей мере, две и часто три, четыре и больше линий. Это означает, что такие элементы представляют собой в действительности смесь химически тождественных, но различающихся по весу атомов. Атомные ядра, которые имеют одинаковый заряд, но различную массу, называют изотопами. Ядра изотопов одного элемента состоят, следовательно, из одинакового числа протонов и разного числа нейтронов (ядра с одинаковым числом нейтронов и разным числом протонов носят название изотопов). Изучение масс-спектрограмм показало, что во всех случаях атомные веса изотопов выражаются числами, которые отличаются от целых только на тысячные доли единицы (причина этого небольшого отличия атомного веса изотопов от целочисленного значения, т. е. от массового числа изотопа, разъяснена в § 113). Так, например, хлор, который по химическим данным имеет атомный вес 35,46, представляет собой смесь двух изотопов с атомными весами, очень близкими к числам 35 и 37; их обозначают символами Химические элементы, имеющие стабильные (т. е. нерадиоактивные) изотопы, входят в соединения, всегда сохраняя некоторую характерную для каждого элемента природную пропорцию изотопов. Так, для магния природным изотопическим составом является: 78,6% изотопа с атомным весом В настоящее время для всех элементов известно всего около тысячи изотопов, большая часть которых, однако, является неустойчивыми, радиоактивными изотопами. Наибольшее число стабильных изотопов имеют элементы с четными атомными номерами. Так, молибден, ртуть, барий, неодим, иттербий (у всех этих элементов атомные номера четные) имеют по 7 нерадиоактивных изотопов, кадмий 8, а олово даже 10 стабильных изотопов. У элементов с нечетными атомными номерами, как правило, существует не более двух стабильных изотопов, а остальные радиоактивны. Многие из элементов с нечетными атомными номерами (например, фтор, натрий, алюминий, фосфор, кобальт и др.) имеют только по одному стабильному изотопу. В ряде случаев изотопы соседних элементов имеют одинаковые массовые числа и, следовательно, почти совпадающие атомные веса. Например, массовое число 13 имеют изотоп углерода и изотоп азота; два изотопа азота обладают такими же массовыми числами (15 и 16), как и два изотопа кислорода, и т. д. Встречаются и тройные и даже четверные совпадения: например, изотопы с массовым числом 70 имеются у цинка, галлия и германия; изотопы с массовым числом 210 существуют у таллия, свинца, висмута, полония и Оба рода ядерных частиц, протоны и нейтроны, объединяют под общим названием нуклоны. Изобарные ядра характеризуются равенством суммарного числа протонов и нейтронов в ядре, т. е. равенством числа нуклонов. На рис. 344 дана диаграмма, характеризующая состав ядер стабильных и некоторых радиоактивных изотопов. По оси абсцисс этой диаграммы отложено число протонов в ядре или, что то же, атомный номер элементов, символы которых для удобства пользования проставлены над осью абсцисс диагонально. На оси ординат отложено число нейтронов в ядре (кликните для просмотра скана) изображающие состав их ядер, лежат между прямыми Мы видим, что в проточно-нейтронной диаграмме все существующие изотопы образуют сравнительно узкую полосу. Это означает, что даже относительно небольшие отклонения от нормального состава ядра делают их совершенно неустойчивыми. Разделение изотопов, которое в ничтожных количествах осуществляется масс-спектрографом, в более или менее значительных масштабах является весьма трудным делом, так как химические свойства изотопов каждого элемента тождественны. Как уже упоминалось, во всех химических реакциях элементы сохраняют свой природный изотопный состав. Однако косвенно обменные химические реакции при их многократном повторении иногда позволяют получить обогащение элемента его наиболее легким или наиболее тяжелым изотопом; при этом используют то обстоятельство, что когда продукты реакции получаются в виде двухфазной системы (жидкости и ее пара), то процентное содержание легкого изотопа в газообразной фазе оказывается несколько большим, чем в конденсированной. Одним из методов разделения изотопов является метод, основанный на явлении диффузии. Коэффициент диффузии зависит от массы частиц и поэтому несколько различен для изотопов одного и того же элемента. Диффузионные аппараты для разделения изотопов (вернее, для обогащения нужным изотопом исходных веществ) состоят из множества звеньев, в каждом из которых осуществляется процесс диффузии. Во всех звеньях диффузионного аппарата диффузия происходит через пористое вещество или же осуществляется диффузия газа в струю паров ртути, уносящих газ, несколько обогатившийся легким изотопом. На рис. 345 представлена схема процессов, применяемых при диффузионном методе обогащения природного урана актиноураном. Природный уран на 99,3% состоит из изотопа с массовым числом 238 и содержит только 0,7% актиноурана с массовым числом 235. Единственным соединением урана, имеющим высокую упругость пара, является шестифтористый уран; его и используют при диффузионном обогащении природного урана. Газообразный более низкое давление, сжимается вспомогательным компрессором и подается на точно такую же последующую ступень, а непродиффундировавший газ через дроссельный клапан, регулирующий величину давления, возвращается в предыдущую ступень. Высокое обогащение достигается в нескольких тысячах ступеней. Диаметр отверстий в пористой перегородке должен быть в несколько раз меньше длины свободного пробега для данного газа (т. е. должен быть не более
Рис. 345. Схема ступени диффузионного обогащения урана (газ Существует метод разделения изотопов, основанный на использовании явления термодиффузии. Это явление заключаете в том, что когда один конец трубки, содержащей смесь газов, сильно нагрет, а другой охлажден, то процентный состав смеси в нагретой и охлажденной частях трубки оказывается не вполне одинаковым. Для разделения изотопов применяют также центрифуги, фракционную перегонку и другие методы. Тяжелый водород и тяжелая вода. Для физики атомного ядра особый интерес представляют изотопы первых двух элементов периодической системы: водорода и гелия. Этот особый интерес к изотопам водорода и гелия объясняется тем, что электронная оболочка атомов указанных элементов, состоящая у водорода В 1932 г. Юреем был открыт изотоп водорода с массовым числом 2. Этот изотоп в отличие от обычного водорода называют тяжелым водородом или чаще дейтерием и обозначают символом При электролизе воды улетучивается главным образом обычный водород и оставшаяся вода обогащается тяжелым водородом. В сочетании с обменными реакциями электролиз воды позволяет получить воду, у которой более чем 99,99% молекул содержит вместо атомов атомы дейтерия Сопоставление физических свойств дейтерия и обычного водорода (см. скан) Из этой таблицы мы видим, что в данном случае масса атомного ядра довольно сильно влияет на молекулярные свойства, которые, вообще говоря, определяются не ядром, а строением электронной оболочки. Существенное различие молекулярных свойств дейтерия и обычного водорода, не наблюдаемое у изотопов других элементов, объясняется тем, что в данном случае отношение масс ядер несравненно более велико, чем у других элементдв. Все приведенные в таблице числа свидетельствуют о том, что интенсивность молекулярного взаимодействия у дейтерия больше, чем у обычного водорода; соответственно этому дейтерий плавится и закипает при несколько большей температуре, чем обычный водород, требует больших затрат теплоты на плавление и испарение, имеет меньшую упругость пара и меньший мольный объем конденсированных фаз. Энергия междуатомного взаимодействия у дейтерия также несколько превышает энергию взаимодействия атомов обычного водорода, что сказывается в большей устойчивости молекул дейтерия при температурах, вызывающих термическую диссоциацию. Физические свойства тяжелой воды, как видно из приведенной ниже таблицы, тоже заметно отличаются от свойств обычной воды. Плотность тяжелой воды при комнатной температуре почти на В отношении биологического действия тяжелая вода является плохим (а для некоторых простейших организмов и вредоносным) заменителем обычной воды. Сопоставление физических свойств тяжелой и обычной воды (см. скан) При облучении обычной воды нейтронами большая их часть захватывается протонами водородных атомов, причем образуются ядра тяжелого водорода. Когда поток быстрых нейтронов попадает в тяжелую воду, то в результате соударений нейтрондв с ядрами тяжелого водорода и кислорода их скорость быстро уменьшается, но захвата нейтронов не происходит и их число остается практически неизменным. В связи с этим тяжелую воду широко используют в ядерных реакторах (§ 107) как лучший замедлитель нейтронов. Для этой цели, несмотря на трудности и дороговизну производства, тяжелую воду вырабатывают в очень больших количествах (сотни тонн). Газообразный дейтерий, ионизированный электрическими разрядами, применяют наряду с обычным водородом в качестве источника анодных лучей. В обоих этих случаях анодные лучи (р-лучи и дейтерия существует еще сверхтяжелый изотоп водорода — тритий В помещенной ниже таблице (стр. 428) приведены массы атомов ряда легких и средних элементов. Массы атомов в этой таблице выражены в атомных (или, что то же, в ядерных) единицах массы. Как уже упоминалось, в качестве атомной единицы массы в физической шкале принята
Из сказанного ясно, что
Очевидно, что эта единица массы меньше химической в Энергетические величины в ядерной физике принято измерять в миллионах электроновольт
где с — скорость света в вакууме, равная приближенно Чтобы выразить эту энергию в
где
Стало быть,
Подставляя сюда
Таким образом, применяя атомные единицы массы и выражая энергию в
Заметим, что из соотношения (1) следует:
|
1 |
Оглавление
|