Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Е. ПРОИСХОЖДЕНИЕ АЭРОБОВОсновываясь на гипотезе конверсии, мы можем считать, что факультативные аэробы среди фотоорганотрофов, в частности несерные пурпурные бактерии Дрюс создал терминологию для обозначения структур клетки, которые, независимо от функции, можно употреблять при изучении родства между клеточной мембраной (КМ) и внутриклеточной мембранной системой (ВКМ). Эта последняя может занимать большую часть объема клетки. По-видимому, она возникла путем инвагинации клеточной мембраны. Фотосинтетическая система пурпурных бактерий в основном, но не исключительно, находится в ВКМ, дыхательная система — в КМ или близ нее. Следовательно, топографическое разделение двух систем, синтезирующих АТФ, неполно. Некоторые авторы склонны считать, что две системы более или менее отделены друг от друга [1749, 1750, 1513]. Другие предполагают существование сложных циклов, служащих и для фотосинтеза, и для дыхания [878, 1331, 1924]. Как бы там ни было, совершенно очевидно, что обе системы находятся в тесном взаимодействии [401, 504, 656, 663, 1147, 1148, 1245, 1344, 1856, 1910]. Для той и другой систем характерны явления индукции и репрессии, в значительной степени! обратимые. Интересно, что были получены мутанты несерной пурпурной бактерии Взаимное влияние фотосинтеза и дыхания наблюдалось также у сине-зеленых водорослей [292, 606, 1423, 1425]. Более слабая связь между этими процессами у эукариотических растений, несомненно, является следствием разделения митохондрий и хлоропластов, в результате которого и те и другие имеют четко определенные функции. В эукариотических растениях могут одновременно протекать процессы фотосинтеза и дыхания с максимальной интенсивностью, причем в обоих случаях будет синтезироваться АТФ. Позже многие из фотосинтезирующих бактерий, ставшие аэробными, утратили способность к фотосинтезу, превратившись в чисто дышащие организмы, т. е. в строгих аэробов среди бактерий. Утрата способности к фотосинтезу хорошо известна также среди сине-зеленых водорослей, от которых произошли бесцветные «скользящие бактерии», энергетика которых основана на процессах дыхания По аналогии с этим дышащие бесцветные серные бактерии (15) могут происходить от фотосинтезирующих окрашенных серобактерий (11). Остается открытым вопрос о том, в каком временном порядке появились облигатные и факультативные дышащие организмы после превращения фотосинтезирующих в дышащие. Фотосинтезирующие бактерии, способные к росту за счет одного брожения, сейчас представляют собой редкое исключение
|
1 |
Оглавление
|