Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.5. Средние значенияВ предыдущих разделах рассматривались понятия вероятности, плотности вероятностей и функции распределения вероятностей для одной и более чем одной случайной величины. Мы видели, что вероятности соответствуют относительным частотам появления событий и не удивительно поэтому, что средние значения (математические ожидания) случайных величин или векторов могут быть определены из функции распределения вероятностей случайных величин.
Рассмотрим
дискретную случайную величину
Вероятность
наступления события
Объединяя (2.101) и (2.102), получим выражение среднего значения через вероятность наступления событий
При возрастании
При
Когда распределение дискретное
подстановка (2.106) в (2.105) непосредственно приводит к ф-ле (2.103) для среднего значения дискретной случайной величины. С помощью рассуждений, аналогичных тем, которые использовались при выводе ф-лы (2.105), получим выражение для среднего значения случайного вектора
Понятие
среднего может быть распространено и на случайный вектор
при помощи основной теоремы о среднем значении
С помощью этой теоремы можно получить математические ожидания значений степеней случайного вектора. Таким образом, определяют различные статистические моменты. Величина
называется
Особенно
важными являются среднее значение
Эти
понятия можно без каких-либо изменений применять и для векторного случая, когда
вводятся понятия среднего значения вектора, матрицы среднеквадратических
значений и ковариационной матрицы вектора
где
Отсюда следует,
что члены главной диагонали ковариационной матрицы представляют собой дисперсию
случайных величин, образующих случайный вектор. Можно определить моменты непосредственно
из характеристических функций, которые получаются,
если положить в (2.108)
Тогда
Для
скалярной случайной величины
Используя приведенные результаты, легко показать, что среднее значение суммы случайных величин равно сумме средних значений слагаемых. Важно отметить, что при этом нет необходимости в специальной оговорке относительно статистической независимости. В большинстве задач, которые рассматриваются в дальнейшем, появляются случайные величины, зависящие от других случайных величин. Поэтому закончим главу определением моментов случайных величин, зависящих от других случайных величин. Условное среднее
значение случайной величины
Безусловное
среднее значение случайной величины
Так как индивидуальная
плотность вероятности
В этом выражении легко выделить условное математическое ожидание (2.122). Таким образом, получим соотношение между условным и безусловным средними значениями
или
где индексация используется для выделения случайной величины, для которой находится среднее. Как правило, мы не будем использовать индексацию моментов распределения, если только это не будет необходимо для ясности. Условная
дисперсия
Для условных дисперсий можно получить выражения, аналогичные ф-лам (2.124) и (2.125). Легко показать, что
где все символы
усреднения относятся к
где
введены индексы для дисперсий, чтобы исключить возможную путаницу. Объединив
полученные результаты (с 2.127), увидим, что дисперсия
случайной величины
Определяя условную характеристическую функцию
можно использовать ее для получения различных моментов. В частности, имеем
|
1 |
Оглавление
|