Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.5.2. Оценка адекватностиВ общем случае под адекватностью понимают степень соответствия модели тому реальному явлению или объекту, для описания которого она строится. Вместе с тем, создаваемая модель ориентирована, как правило, на исследование определенного подмножества свойств этого объекта. Поэтому можно считать, что адекватность модели определяется степенью ее соответствия не столько реальному объекту, сколько целям исследования. В наибольшей степени это утверждение справедливо относительно моделей проектируемых систем (т. е. в ситуациях, когда реальная система вообще не существует).
Тем не менее, во многих случаях полезно иметь формальное подтверждение (или обоснование) адекватности разработанной модели. Один из наиболее распространенных способов такого обоснования - использование методов математической статистики [6, 7, 39]. Суть этих методов заключается в проверке выдвинутой гипотезы (в данном случае - об адекватности модели) на основе некоторых статистических критериев. При этом следует заметить, что при проверке гипотез методами математической статистики необходимо иметь в виду, что статистические критерии не могут доказать ни одной гипотезы - они могут лишь указать на отсутствие опровержения. Итак, каким же образом можно оценить адекватность разработанной модели реально существующей системе? Процедура оценки основана на сравнении измерений на реальной системе и результатов экспериментов на модели и может проводиться различными способами. Наиболее распространенные из них [10, 26]: – по средним значениям откликов модели и системы; – по дисперсиям отклонений откликов модели от среднего значения откликов системы; – по максимальному значению относительных отклонений откликов модели от откликов системы. Названные способы оценки достаточно близки между собой, по сути,
поэтому ограничимся рассмотрением первого из них. При этом способе проверяется
гипотеза о близости среднего значения наблюдаемой переменной В результате Затем вычисляются оценки математического ожидания и
дисперсии откликов модели и системы, после чего выдвигается гипотеза о близости
средних значений величин
|
1 |
Оглавление
|