Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике 7.2. Пакет визуального моделирования SimulinkОдной из самых сложных проблем в реализации математического моделирования в среде MATLAB является подготовка модели моделируемой системы или устройства. Модель обычно представляется в форме графического, табличного или таблично-топологического описания. При этом необходимо предусмотреть организацию связей между компонентами и установку их параметров. После этого нужно запустить модель на исполнение, т. е. задать решение автоматически составленной системы уравнений состояния и вывод результатов решения, что зачастую представляет собой достаточно сложную задачу.
Все вышеупомянутые проблемы эффективно решаются при помощи расширения Simulink – важной составной части системы MATLAB. Это расширение реализует визуально-ориентированное программирование задач автоматического составления графической модели системы или устройства, составления и решения уравнений состояния и наглядного представления результатов моделирования. Пакет Simulink позволяет выполнять симуляцию работы моделируемых систем и устройств, т. е. осуществлять имитационное моделирование [10]. Новые версии Simulink интенсивно развиваются в направлении развития техники моделирования систем и устройств, структура которых может изменяться под воздействием ситуаций, которые характерны для работы устройств в те или иные моменты времени. Другими словами, развивается направление ситуационного моделирования. Специальное расширение StateFlow BlockSet обеспечивает расширенные возможности ситуационного моделирования – в частности позволяет в динамике отслеживать связи между блоками моделей и строить наглядные SF-диаграммы [10, 14]. Пакет Simulink является ядром интерактивного программного комплекса, предназначенного для математического моделирования линейных и нелинейных динамических систем и устройств, представленных своей функциональной блок-схемой, именуемой S-моделью или просто моделью. При этом возможны различные варианты моделирования: во временной области, в частотной области, с событийным управлением, на основе спектральных преобразований, с использованием метода Монте-Карло (реакция на воздействия случайного характера) и т. п. Для построения функциональной блок-схемы моделируемых устройств Simulink имеет обширную библиотеку блочных компонентов (рис. 7.1) и удобный редактор блок-схем. Он основан на графическом интерфейсе пользователя и по существу является типичным средством визуально-ориентированного программирования. Используя палитры компонентов (наборы), пользователь с помощью мыши переносит нужные блоки с палитр на рабочий стол пакета Simulink и соединяет линиями входы и выходы блоков. Таким образом, создается блок-схема системы или устройства, то есть модель.
Simulink автоматизирует следующий, наиболее трудоёмкий этап моделирования: он составляет и решает сложные системы алгебраических и дифференциальных уравнений, описывающих заданную функциональную схему (модель), обеспечивая удобный и наглядный визуальный контроль за поведением созданного пользователем виртуального устройства – достаточно уточнить (если нужно) вид анализа и запустить Simulink в режиме симуляции созданной модели системы или устройства. Ценность пакета Simulink заключается и в обширной, открытой для изучения и модификации библиотеке компонентов (блоков). Она включает источники сигналов с практически любыми временными зависимостями, масштабирующие, линейные и нелинейные преобразователи с разнообразными формами передаточных характеристик, квантующее устройство, интегрирующие и дифференцирующие блоки и т. д. Кроме этого пакет Simulink включает в себя отдельные специализированные библиотеки, наиболее полезными из которых являются пакет для моделирования систем передачи дискретных сообщений (Communications Blockset) и пакет для моделирования систем цифровой обработки сигналов (DSP Blockset). Программные средства моделирования динамических систем известны давно, к ним относятся, например, программы Tutsim и LabVIEW for Industrial Automation. Однако для эффективного применения таких средств необходимы высокоскоростные решающие устройства. Интеграция системы MATLAB с пакетом Simulink открывает новые возможности использования самых современных математических методов для решения задач динамического и ситуационного моделирования сложных систем и устройств. Средства графической анимации Simulink позволяют строить виртуальные физические лаборатории с наглядным представлением результатов моделирования. Возможности Simulink охватывают задачи математического моделирования сложных динамических систем в физике, электро- и радиотехнике, биологии и других областях науки и техники. Этим объясняется популярность данного пакета как в вузах, так и в научных лабораториях. Важным достоинством пакета Simulink является возможность задания в блоках произвольных математических выражений, что позволяет решать типовые задачи, пользуясь примерами пакета Simulink или же просто задавая новые выражения, описывающие работу моделируемых пользователем систем и устройств. Важным свойством пакета является возможность задания системных функций (S-функций) с включением их в состав библиотек Simulink. Необходимо также отметить возможность моделирования устройств и систем в реальном масштабе времени. Как программное средство Simulink – типичный представитель визуально-ориентированных языков программирования. На всех этапах работы, особенно при подготовке моделей систем, пользователь практически не имеет дела с обычным программированием. Программа в кодах автоматически генерируется в процессе ввода выбранных блоков компонентов, их соединений и задания параметров компонентов. Важное преимущество Simulink – это интеграция не только с системой MATLAB, но и с рядом других пакетов расширения, что обеспечивает, по существу, неограниченные возможности применения Simulink для решения практически любых задач имитационного и событийного моделирования.
|
1 |
Оглавление
|