Главная > Фейнмановские лекции по физике: Т.3 Излучение. Волны. Кванты
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 6. Аберрация

Пока вы еще не успели прийти в восхищение от такой великолепной штуки, как линза, я должен успеть сказать об ее серьезных недостатках, которые мы не могли заметить раньше, поскольку ограничились рассмотрением параксиальных лучей. Реальная линза обладает конечной толщиной и, вообще говоря, обнаруживает свойства аберрации. Например, луч, направленный вдоль оси, обязательно пройдет через фокус. Луч, близкий к оси, будет еще проходить через фокус, но более далекие лучи начнут от него отклоняться: близкие ненамного, а крайний луч уже на большое расстояние. В результате вместо точечного изображения получается расплывчатое пятно. Этот эффект называется сферической аберрацией, потому что он возникает в результате использования сферических поверхностей вместо поверхностей правильной формы. Для каждого данного расстояния от объекта до линзы эффект аберрации можно устранить, изменив форму линзы или взяв несколько линз с таким расчетом, чтобы аберрации отдельных линз взаимно уничтожались.

Линзы страдают еще одним недостатком: свет разного цвета имеет разную скорость, т. е. разные показатели преломления в стекле, а поэтому фокусное расстояние для разных цветов разное. Изображение белого пятна получается цветным, так как, когда в фокусе красный цвет, синий оказывается вне фокуса, и наоборот. Это явление называется хроматической аберрацией.

Бывают и другие искажения. Если объект находится не на оси, то добиться четкого фокуса невозможно. Легче всего это проверить, наклонив наведенную на фокус линзу так, чтобы в нее попадали лучи под большим углом к оси. Тогда изображение сильно расплывется и может случиться, что ни одного четко сфокусированного места не останется. Таким образом, линзы страдают рядом искажений, и обычно оптик-конструктор старается их выправить, соединяя по нескольку линз, с тем чтобы скомпенсировать искажения отдельных линз.

До какого предела можно устранить аберрации? Можно ли создать совершенную оптическую систему? Допустим, что мы сумели построить оптическую систему, фокусирующую свет точно в одну точку. Можем ли мы теперь найти требования (с точки зрения принципа Ферма), которым должна удовлетворять наша система? Система всегда имеет отверстие конечных размеров, в которое входит свет. Для совершенной системы время прохождения любого, как угодно удаленного от оптической оси луча одинаково. Но абсолютного совершенства не бывает, поэтому поставим вопрос: каков разумный предел точности совпадения всех времен? Это зависит от того, насколько совершенное изображение мы хотим иметь. Предположим, что мы хотим, чтобы оно было настолько совершенным, насколько это вообще возможно. Тогда с первого взгляда кажется, что и времена прохождения всех лучей нужно уравнять с максимальной точностью. На самом деле это не так; существует некий предел, за которым всякое уточнение бессмысленно, потому что приближение геометрической оптики перестает работать!

Вспомним, что принцип наименьшего времени, в отличие от закона сохранения энергии и импульса, не есть точный принцип, а лишь некоторое приближение. И поэтому интересно установить, какие ошибки допустимы в пределах точности этого приближения. Ответ: не имеет смысла требовать равенства времен прохождения лучей (скажем, в худшем случае луча вдоль оси и наиболее удаленного от оси) с точностью, превышающей период колебания света. Свет есть колебательный процесс с определенной частотой, которая связана с длиной волны, и если мы добились, что времена прохождения лучей отличаются на величину, меньшую или порядка периода колебаний, то дальше уравнивать времена бесполезно.

 

1
Оглавление
email@scask.ru