Главная > Фейнмановские лекции по физике: Т.3 Излучение. Волны. Кванты
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 27. Геометрическая оптика

§ 1. Введение

В этой главе мы рассмотрим некоторые применения изложенных ранее принципов устройству простейших оптических систем, используя приближение геометрической оптики. При конструировании многих оптических приборов это приближение оказывается особенно полезным. Геометрическая оптика и очень проста, и очень сложна. Я хочу этим сказать, что уже поверхностное изучение геометрической оптики в школе позволяет с помощью очень простых правил составлять грубые схемы приборов; если же мы хотим при этом учитывать искажения в линзах и прочие тонкости, то задача становится слишком сложной даже для студентов вашего курса! Если кому-нибудь действительно понадобится точно спроектировать линзу, учитывая аберрацию, то лучше всего обратиться к специальным руководствам или просто проследить путь лучей через разные поверхности (как это сделать — сказано в книгах) и, пользуясь законом преломления, определить направление вышедших из линзы пучков и выяснить, насколько хорошее изображение они создают. Считалось, что это слишком длинная процедура, но сейчас, когда мы вооружены вычислительными машинами, этот способ вполне хорош. Сформулировав задачу математически, легко подсчитать пути всех лучей. Словом, дело это простое и не требует новых принципов. Кроме того, законы и элементарной и специальной оптики фактически неприменимы в других областях, поэтому нам не было бы необходимости чересчур подробно изучать предмет, если бы не одно важное исключение.

Фигура 27.1. Треугольник, высота которого  меньше основания , а гипотенуза  больше основания

Оказалось, что наиболее современная и абстрактная теория геометрической оптики, разработанная Гамильтоном, имеет весьма важные приложения в механике, причем в механике она имеет даже большее значение, чем в оптике, поэтому пусть его занимается курс аналитической механики. А пока, понимая, что геометрическая оптика интересна только сама по себе, мы перейдем к изучению элементарных свойств оптических систем на основе принципов, изложенных в предыдущей главе.

Для дальнейшего нам понадобится одна геометрическая формула: пусть дан треугольник, высота которого  мала, а основание  велико; тогда гипотенуза  (фиг. 27.1) больше основания (нам нужно это знать, чтобы вычислить разность времен на двух различных путях света). Насколько гипотенуза больше основания? Мы можем найти разность  несколькими способами. Например,  или . Но , а . Таким образом,

.                                                (27.1)

Вот и все, что нам нужно знать из геометрии для изучения изображений, получаемых с помощью кривых поверхностей!

 

1
Оглавление
email@scask.ru