Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 2. Равновесие в электростатическом полеРассмотрим сначала следующий вопрос: в каких условиях точечный заряд может пребывать в механическом равновесии в электрическом поле других зарядов? В качестве примера представим себе три отрицательных заряда в вершинах равностороннего треугольника, расположенного в горизонтальной плоскости. Останется ли на своем месте положительный заряд, помещенный в центр треугольника? (Для простоты тяжестью пренебрежем; но и учет ее влияния не изменит выводов.) Сила, действующая на положительный заряд, равна нулю, но устойчиво ли это равновесие? Вернется ли заряд в положение равновесия, если его чуть сдвинуть с этого места? Ответ гласит: нет.
Ни в
каком электростатическом
поле не существует никаких точек устойчивого равновесия, за исключением случая,
когда заряды сидят друг на друге. Применяя закон Гаусса, легко понять почему.
Во-первых, чтобы заряд пребывал в равновесии в некоторой точке Возьмем
небольшую воображаемую поверхность, окружающую точку
Фигура 5.1. Если бы точка Этот вывод мы проделали для точечного заряда. Соблюдается ли он для сложной расстановки зарядов, относительное расположение которых чем-то фиксировано (скажем, стержнями)? Разберем этот вопрос на примере двух одинаковых зарядов, закрепленных на стержне. Может ли эта комбинация в каком-то электрическом поле застыть в равновесии? И опять ответ гласит: нет. Суммарная сила, действующая на стержень, не способна возвращать его к положению равновесия при любых направлениях смещения. Обозначим
суммарную силу, действующую на стержень в любом положении, буквой
Дивергенция
Если
каждый из двух зарядов Но мы не
собираемся доказывать, что если заряд может скользить по стержням или опираться
на другие механические связи, то равновесие все равно невозможно. Это не так.
Возьмем для примера трубку, в которой заряд может свободно двигаться вперед и
назад (но не в сторону). Теперь легко устроить электрическое поле, которое на
концах трубки направлено внутрь нее (при. этом близ центра трубки ему
разрешается быть направленным наружу, в сторону). Для этого надо просто поместить
по положительному заряду на каждом конце трубки (фиг. 5.2). Теперь точка
равновесия существует даже в том случае, когда дивергенция
Фигура 5.2. Заряд может быть в равновесии, если имеются механические ограничения.
|
1 |
Оглавление
|