Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 4. Магнитное поле постоянного тока; закон Ампера
Мы видели, что на проволоку в магнитном поле, создаваемом, скажем, магнитом, действует сила. Из закона о том, что действие равно противодействию, можно ожидать, что, когда по проволоке протекает ток, возникает сила, действующая на источник магнитного поля, т. е. на магнит. Такие силы действительно существуют; в этом можно убедиться по отклонению стрелки компаса вблизи проволоки с током. Далее, мы знаем, что магниты испытывают действие сил со стороны других магнитов, а отсюда вытекает, что когда по проволоке течет ток, то он создает собственное магнитное поле. Значит, движущиеся заряды создают магнитное поле. Попытаемся понять законы, которым подчиняются такие магнитные поля. Вопрос ставится так: дан ток, какое магнитное поле он создаст? Ответ на этот вопрос был получен экспериментально тремя опытами и подтвержден блестящим теоретическим доказательством Ампера. Мы не будем останавливаться на этой интересной истории, а просто скажем, что большое число экспериментов наглядно показало справедливость уравнений Максвелла. Их мы и возьмем в качестве отправной точки. Опуская в уравнениях члены с производными по времени, мы получаем уравнения магнитостатики
и
Эти уравнения справедливы только при условии, что все плотности электрических зарядов и все токи постоянны, так что электрические и магнитные поля не меняются со временем — все поля «статические». Можно
тут заметить, что верить в существование статического магнитного поля довольно
опасно, потому что вообще-то для получения магнитного поля нужны токи, а токи
возникают только от движущихся зарядов. Следовательно, «магнитостатика» —
только приближение. Она связана с особым случаем динамики, когда движется большое
число зарядов, которые можно приближенно описывать как постоянный поток
зарядов. Только в этом случае можно говорить о плотности тока Условие,
что Обратимся
теперь к уравнениям (13.12) и (13.13) и посмотрим, что они означают. Первое
говорит, что дивергенция Связь
между полем
Фигура 13.6. Контурный интеграл от
тангенциальной составляющей Мы получили этот результат с помощью теоремы Стокса, согласно которой интеграл по любому замкнутому пути от любого векторного поля равен поверхностному интегралу от нормальной компоненты ротора этого вектора (интеграл берется по любой поверхности, натянутой на данный контур). Применяя эту же теорему к вектору магнитного поля и используя обозначения, показанные на фиг. 13.6, получаем
Найдя
Интеграл
от
Этот
закон, называемый законом Ампера, играет такую же роль в магнитостатике, как
закон Гаусса в электростатике. Один лишь закон Ампера не определяет
|
1 |
Оглавление
|