Главная > Фейнмановские лекции по физике. Т.5. Электричество и магнетизм
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 7. Поля без роторов и поля без дивергенций

Теперь перейдем к некоторым следствиям из наших новых теорем. Возьмем сперва случай вектора, у которого ротор (или вихрь) повсюду равен нулю. Тогда, согласно теореме Стокса, циркуляция по любому контуру — нуль. Если мы теперь возьмем две точки (1) и (2) на замкнутой кривой (фиг. 3.12), то криволинейный интеграл от касательной составляющей от (1) до (2) не должен зависеть от того, какой из двух возможных путей мы выбрали. Можно заключить, что интеграл от (1) до (2) может зависеть только от расположения этих точек, т. е. что он есть функция только от координат точек. Той же логикой мы пользовались в вып. 1, гл. 14, когда доказывали, что если интеграл от некоторой величины по произвольному замкнутому контуру всегда равен нулю, то этот интеграл может быть представлен в виде разности функций от координат двух концов. Это позволило нам изобрести понятие потенциала. Мы доказали далее, что векторное поле является градиентом этой потенциальной функции [см. вып. 1, уравнение (14.13)].

Фигура 3.12. Если  равно нулю, то циркуляция по замкнутой кривой  тоже нуль. Криволинейный интеграл от  но участке от (1) до (2) вдоль а должен быть равен интегралу вдоль .

Отсюда следует, что любое векторное поле, у которого ротор равен нулю, может быть представлено в виде градиента некоторой скалярной функции, т. е. если  всюду, то существует некоторая функция , для которой  (полезное представление). Значит, мы можем, если захотим, описывать этот род векторных полей при помощи скалярных полей.

Теперь докажем еще одну формулу. Пусть у нас есть произвольное скалярное поле . Если взять его градиент , то интеграл от этого вектора по любому замкнутому контуру должен быть равен нулю. Криволинейный интеграл от точки (1) до точки (2) равен . Если точки (1) и (2) совпадают, то наша теорема 1 [уравнение (3.8)] сообщает нам, что криволинейный интеграл равен нулю:

Применяя теорему Стокса, можно заключить, что

по любой поверхности. Но раз интеграл по любой поверхности равен нулю, то подынтегральное выражение обязано быть равно нулю. Значит,

Тот же результат был доказан в гл. 2, § 7 при помощи векторной алгебры.

Рассмотрим теперь частный случай, когда на маленький контур  натягивается большая поверхность  (фиг. 3.13). Мы хотим посмотреть, что случится, когда контур стянется в точку. Тогда граница поверхности исчезнет, а сама поверхность превратится в замкнутую. Если вектор  повсюду конечен, то криволинейный интеграл по  должен стремиться к нулю по мере стягивания контура (интеграл в общем-то пропорционален длине контура , а она убывает). Согласно теореме Стокса, поверхностный интеграл от  тоже должен убывать до нуля. Когда поверхность замыкается, то при этом каким-то образом в интеграл привносится вклад, который взаимно уничтожается с накопленным ранее. Получается новая теорема:

                                (3.39)

Фигура 3.13. При переходе к пределу замкнутой поверхности поверхностный интеграл от  должен обратиться в нуль.

Это нас должно заинтересовать, потому что у нас уже есть одна теорема о поверхностном интеграле векторного поля. Такой поверхностный интеграл равен объемному интегралу от дивергенции вектора, как это следует из теоремы Гаусса [уравнение (3.18)]. Теорема Гаусса в применении к  утверждает, что

                            (3.40)

Мы заключаем, что интеграл в правой части должен обращаться в нуль

                           (3.41)

и что это должно быть справедливо для любого векторного поля , каким бы оно ни было. Раз уравнение (3.41) выполнено для произвольного объема, то в каждой точке пространства подынтегральное выражение должно быть равно нулю. Получается, что

Тот же результат был выведен с помощью векторной алгебры в гл. 2, § 7. Теперь мы начинаем понимать, как все здесь прилажено одно к другому.

 

1
Оглавление
email@scask.ru