Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике § 2. Электрические токи в атмосфереПомимо градиента потенциала, можно измерять и другую величину — ток в атмосфере. Плотность его мала: через каждый квадратный метр, параллельный земной поверхности, проходит около . Воздух, по-видимому, не идеальный изолятор; из-за этой проводимости от неба к земле все время течет слабый ток, вызываемый описанным нами электрическим полем.
Почему атмосфера имеет проводимость? Потому что в ней среди молекул воздуха попадаются ионы, например, молекулы кислорода, порой снабженные лишним электроном, а порой лишенные одного из своих. Эти ионы не остаются одинокими; благодаря своему электрическому полю они обычно собирают близ себя другие молекулы. Каждый ион тогда становится маленьким комочком, который вместе с другими такими же комочками дрейфует в поле, медленно двигаясь вверх или вниз, создавая ток, о котором мы говорили. Откуда же берутся ионы? Сперва думали, что ионы создает радиоактивность Земли. (Было известно, что излучение радиоактивных веществ делает воздух проводящим, ионизуя молекулы воздуха.) Частицы, выходящие из атомного ядра, скажем. -лучи, движутся так быстро, что они вырывают электроны у атомов, оставляя за собой дорожку из ионов. Такой взгляд, конечно, предполагает, что на больших высотах ионизация должна была бы становиться меньше, потому что вся радиоактивность — все следы радия, урана, натрия и т. д.— находится в земной пыли.
Фигура. 9.3. Измерение проводимости воздуха, вызываемой движением ионов. Чтобы проверить эту теорию, физики поднимались на воздушных шарах и измеряли ионизацию (Гесс, в 1912г.). Выяснилось, что все происходит как раз наоборот — ионизация на единицу объема с высотой растет! (Прибор был похож на изображенный на фиг. 9.3. Две пластины периодически заряжались до потенциала . Вследствие проводимости воздуха они медленно разряжались; быстрота разрядки измерялась электрометром.) Этот непонятный результат был самым потрясающим открытием во всей истории атмосферного электричества. Открытие было столь важно, что потребовало выделения новой отрасли науки — физики космических лучей. А само атмосферное электричество осталось среди явлений менее удивительных. Ионизация, видимо, порождалась чем-то вне Земли; поиски этого неземного источника привели к открытию космических лучей. Мы не будем сейчас говорить о них и только скажем, что именно они поддерживают снабжение воздуха ионами. Хотя ионы постоянно уносятся, космические частицы, врываясь из мирового пространства, то и дело сотворяют новые ионы. Чтобы быть точными, мы должны отметить, что, кроме ионов, составленных из молекул, бывают и другие сорта ионов. Мельчайшие комочки почвы, подобно чрезвычайно тонким частичкам пыли, плавают в воздухе и заряжаются. Их иногда называют «ядрами». Скажем, когда в море плещутся волны, мелкие брызги взлетают в воздух. Когда такая капелька испарится, в воздухе остается плавать маленький кристаллик . Затем эти кристаллики могут привлечь к себе заряды и стать ионами; их называют «большими ионами». Малые ионы, т. е. те, которые создаются космическими лучами, самые подвижные. Из-за того, что они очень малы, они быстро проносятся по воздуху, со скоростью около в поле , или . Большие и тяжелые ионы движутся куда медленнее. Оказывается, что если «ядер» много, то они перехватывают заряды от малых ионов. Тогда, поскольку «большие ионы» движутся в поле очень медленно, общая проводимость уменьшается. Поэтому проводимость воздуха весьма переменчива — она очень чувствительна к его «засоренности». Над сушей этого «сора» много больше, чем над морем, ветер подымает с земли пыль, да и человек тоже всячески загрязняет воздух. Нет ничего удивительного в том, что день ото дня, от момента к моменту, от одного места к другому проводимость близ земной поверхности значительно меняется. Электрическое поле в каждой точке над земной поверхностью тоже меняется, потому что ток, текущий сверху вниз, в разных местах примерно одинаков, а изменения проводимости у земной поверхности приводят к вариациям поля. Проводимость воздуха, возникающая в результате дрейфа ионов, также быстро увеличивается с высотой. Происходит это по двум причинам. Во-первых, с высотой растет ионизация воздуха космическими лучами. Во-вторых, по мере падения плотности воздуха увеличивается свободный пробег ионов, так что до столкновения им удается дальше пройти в электрическом поле. В итоге на высоте проводимость резко подскакивает. Сама плотность электрического тока в воздухе равна всего нескольким микромикроамперам на квадратный метр, но ведь на Земле очень много таких квадратных метров. Весь электрический ток, достигающий земной поверхности, равен примерно . Этот ток, конечно, «положителен» — он переносит к Земле положительный заряд. Так что получается ток в при напряжении . Мощность ! При таком сильном токе отрицательный заряд Земли должен был бы вскоре исчезнуть. Фактически понадобилось бы только около получаса, чтобы разрядить всю Землю. Но с момента открытия в атмосфере электрического поля прошло куда больше получаса. Как же оно держится? Чем поддерживается напряжение? И между чем и чем оно? На одном электроде Земля, а что на другом? Таких вопросов множество. Земля заряжена отрицательно, а потенциал в воздухе положителен. На достаточно большой высоте проводимость так велика, что вероятность изменений напряжения по горизонтали становится равной нулю. Воздух при том масштабе времени, о котором сейчас идет речь, фактически превращается в проводник. Это происходит на высоте около . Это еще не так высоко, как-то, что называют «ионосферой», где имеется очень большое количество ионов, образуемых за счет фотоэффекта от солнечных лучей. Для наших целей можно, обсуждая свойства атмосферного электричества, считать, что на высоте примерно воздух становится достаточно проводящим и там существует практически проводящая сфера, из которой вытекают вниз токи. Положение дел изображено на фиг. 9.4. Вопрос в том, как держится там положительный заряд. Как он накачивается обратно? Раз он стекает на Землю, то должен же он как-то перекачиваться обратно? Долгое время это было одной из главных загадок атмосферного электричества.
Фигура. 9.4. Типичные характеристики электрических свойств чистой атмосферы. Любая информация на этот счет может дать ключ к загадке или по крайней мере хоть что-то сообщить о ней. Вот одно интересное явление: если мы измеряем ток (а он, как мы знаем, устойчивее, чем градиент потенциала), скажем над морем, и при тщательном соблюдении предосторожностей, очень аккуратно все усредняем и избавляемся от всяких ошибок, то мы обнаруживаем, что остаются все же какие-то суточные вариации. Среднее по многим измерениям над океанами обладает временной вариацией примерно такой, какая показана на фиг. 9.5. Ток меняется приблизительно на ±15% и достигает наибольшего значения в 7 часов вечера по лондонскому времени. Самое странное здесь то, что, где бы вы ни измеряли ток — в Атлантическом ли океане, в Тихом ли или в Ледовитом, — его часы пик бывают тогда, когда часы в Лондоне показывают 7 вечера! Повсюду во всем мире ток достигает максимума в 19.00 по лондонскому времени, а минимума — в 4.00 по тому же времени. Иными словами, ток зависит от абсолютного земного времени, а не от местного времени в точке наблюдения. В одном отношении это все же не так уж странно; это вполне сходится с нашим представлением о том, что на самом верху имеется очень большая горизонтальная проводимость, которая и исключает местные изменения разности потенциалов между Землей и верхом. Любые изменения потенциала должны быть всемирными, и так оно и есть. Итак, теперь мы знаем, что напряжение «вверху» с изменением абсолютного земного времени то подымается, то падает на 15%.
Фигура. 9.3. Средняя суточная вариация градиента потенциала атмосферы в ясную погоду над океанами.
|
1 |
Оглавление
|