Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 6. Момент количества движения
Для
интереса рассмотрим еще одну операцию – операцию орбитального момента
количества движения. В гл. 15 мы определили оператор
(напоминаем:
это определение применимо только к состоянию
Если
мы решили описывать состояние
Что
же такое
(напоминаем,
что
Это и есть наш ответ. Обратите, однако, внимание, что это определение эквивалентно такому:
Или, если вернуться к нашим квантовомеханическим операторам, можно написать
Эту
формулу легко запомнить, потому что она похожа на знакомую формулу классической
механики: это
Фиг. 18.2. Поворот осей вокруг
оси Одна из забавных сторон манипуляций с операторами заключается в том, что многие классические уравнения переносятся в квантовомеханическую форму. А какие нет? Ведь должны же быть такие, которые не получаются, потому что если бы все повторялось, то в квантовой механике не было бы ничего отличного от классической, не было бы новой физики. Вот вам уравнение, которое отличается. В классической физике
А что в квантовой механике?
Подсчитаем
это в
или
Вспомним теперь, что производные действуют на всё, что справа. Получаем
Ответ
не нуль. Вся операция попросту равнозначна умножению на
Если бы постоянная Планка была равна нулю, то квантовые и классические результаты стали бы одинаковыми и не пришлось бы нам учить никакой квантовой механики! Отметим,
что если два каких-то оператора
не
дают нуля, то мы говорим, что «операторы не перестановочны», или «операторы не
коммутируют». А уравнение наподобие (18.74) называется «перестановочным
соотношением». Вы можете сами убедиться, что перестановочное соотношение для
Существует еще одно очень важное перестановочное соотношение. Оно относится к моментам количества движения. Вид его таков:
Если
вы хотите приобрести некоторый опыт работы с операторами Интересно
заметить, что операторы, которые не коммутируют, можно встретить и в
классической физике. Мы с этим уже сталкивались, когда говорили о поворотах в
пространстве. Если вы повернете что-нибудь, например книжку, сперва на 90°
вокруг оси
|
1 |
Оглавление
|