Главная > Фейнмановские лекции по физике. Т.9. Квантовая механика. Ч.2
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Глава 19. УРАВНЕНИЕ ШРЕДИНГЕРА В КЛАССИЧЕСКОМ КОНТЕКСТЕ. СЕМИНАР ПО СВЕРХПРОВОДИМОСТИ

§ 1. Уравнение Шредингера в магнитном поле

Эту лекцию я читаю вам для развлечения. Захотелось посмотреть, что получится, если начать читать в немного ином стиле. В курс она не входит, и не думайте, что это попытка обучить вас в последний час чему-то новому. Я скорее воображаю, будто провожу семинар или будто делаю отчет об исследованиях перед более подготовленной аудиторией, перед людьми, которые в квантовой механике уже многое понимают. Основное различие между семинаром и регулярной лекцией в том, что на семинаре докладчик не приводит все стадии, всю алгебру выкладок. Он просто говорит: «Если вы проделаете то-то и то-то, то получится вот что», а в детали не входит. Вот и в этой лекции будут только высказываться идеи и приводиться результаты расчетов. А вы должны понимать, что вовсе не обязательно во всем немедленно и до конца разбираться, надо только верить, что если проделать все выкладки, то все так и получится.

Но это не все. Главное – что об этом мне хочется говорить. Это такая свежая, актуальная, современная тема, что вполне законно вынести ее на семинар. Тема эта – классический аспект уравнения Шредингера, явление сверхпроводимости.

Обычно та волновая функция, которая появляется в уравнении Шредингера, относится только к одной или к двум частицам. И сама волновая функция классическим смыслом не обладает в отличие от электрического поля, или векторного потенциала, или других подобных вещей. Правда, волновая функция отдельной частицы - это «поле» в том смысле, что она есть функция положения, но классического значения она, вообще говоря, не имеет. Тем не менее бывают иногда обстоятельства, в которых квантовомеханическая волновая функция действительно имеет классическое значение, именно их я и хочу коснуться. Своеобразие квантовомеханического поведения вещества в мелких масштабах обычно не дает себя чувствовать в крупномасштабных явлениях, если не считать стандартных выводов о том, что оно вызывает к жизни законы Ньютона, законы так называемой классической механики. Но существуют порой обстоятельства, в которых особенности квантовой механики могут особым образом сказаться в крупномасштабных явлениях.

При низких температурах, когда энергия системы очень-очень сильно убывает, вместо прежнего громадного количества состоянии в игру включается только очень-очень малое количество состояний - тех, которые расположены неподалеку от основного. При таких условиях квантовомеханический характер этого основного состояния может проявиться на макроскопическом уровне. Вот целью этой лекции и будет продемонстрировать связь между квантовой механикой и крупномасштабными эффектами – не обычное обсуждение пути, по которому квантовая механика в среднем воспроизводится ньютоновой механикой, а специальный случай, когда квантовая механика вызывает свои собственные, характерные для нее эффекты в крупных, «макроскопических» размерах.

Начну с того, что напомню вам кое-какие свойства уравнения Шредингера. Я хочу с помощью уравнения Шредингера описать поведение частицы в магнитном поле, потому что явления сверхпроводимости связаны с магнитными полями. Внешнее магнитное поле описывается векторным потенциалом, и вопрос состоит в том, каковы законы квантовой механики в поле векторного потенциала. Принцип, определяющий квантовомеханическое поведение частицы в поле векторного потенциала, очень прост. Амплитуда того, что частица при наличии поля перейдет по некоторому пути из одного места в другое (фиг. 19.1), равна амплитуде того, что она прошла бы по этому пути без поля, умноженной на экспоненту от криволинейного интеграла от векторного потенциала, умноженного в свою очередь на электрический заряд и деленного на постоянную Планка [см. гл. 15, § 2 (вып. 6)]:

.                           (19.1)

Это исходное утверждение квантовой механики.

227.gif

Фиг. 19.1. Амплитуда перехода из  в  по пути  пропорциональна .

И вот в отсутствие векторного потенциала уравнение Шредингера для заряженной частицы (нерелятивистской, без спина) имеет вид

,                       (19.2)

где  – электрический потенциал, так что  – потенциальная энергия. А уравнение (19.1) равнозначно утверждению, что в магнитном поле градиенты в гамильтониане нужно каждый раз заменять на градиент минус , так что (19.2) превращается в

.                  (19.3)

Это и есть уравнение Шредингера для частицы с зарядом  (нерелятивистской, без спина), движущейся в электромагнитном поле .

Чтобы стало ясно, что оно правильно, я хочу проиллюстрировать это простым примером, когда вместо непрерывного случая имеется линия атомов, расставленных на оси  на расстоянии  друг от друга, и существует амплитуда  того, что электрон перепрыгнет в отсутствие поля от одного атома к другому. Тогда, согласно уравнению (19.1), если имеется вектор-потенциал  в -направлении, то амплитуда перескока по сравнению с тем, что было раньше, изменится, ее придется домножить на  - экспоненту с показателем, равным произведению  на векторный потенциал, проинтегрированный от одного атома до другого. Для простоты мы будем писать , поскольку , вообще говоря, зависит от . Если обозначить через  амплитуду того, что электрон обнаружится возле атома , расположенного в точке , то скорость изменения этой амплитуды будет даваться уравнением

.                  (19.4)

В нем три части. Во-первых, у электрона, который находится в точке , есть некоторая энергия . Это, как обычно, дает член . Затем имеется член , т. е. амплитуда того, что электрон от атома , расположенного в , отпрыгнул на шаг назад. Однако если это происходит в присутствии векторного потенциала, то фаза амплитуды обязана сместиться согласно правилу (19.1). Если  на расстоянии между соседними атомами заметно не изменяется, то интеграл можно записать попросту в виде значения  посредине, умноженного на расстояние. Итак, произведение  на интеграл равно . А раз электрон прыгал назад, я этот сдвиг фазы отмечаю знаком минус. Это дает вторую часть. И точно так же имеется некоторая амплитуда того, что будет прыжок вперед, но на этот раз уже берется векторный потенциал с другой стороны от , на расстоянии , и умножается на расстояние . Это дает третью часть. В сумме получается уравнение для амплитуды того, что частица в поле, характеризуемом векторным потенциалом, окажется в точке .

Но дальше мы знаем, что если функция  достаточно плавная (мы берем длинноволновый предел) и если мы сдвинем атомы потеснее, то уравнение (14.4) (стр. 80) будет приблизительно описывать поведение электрона в пустоте. Поэтому следующим шагом явится разложение обеих сторон (19.4) по степеням , считая  очень малым. К примеру, если , то правая часть будет равна просто , так что в нулевом приближении энергия равняется . Затем пойдут степени , но из-за того, что знаки показателей экспонент противоположны, останутся только четные степени. В итоге, если вы разложите в ряд Тэйлора ,  и экспоненты и соберете затем члены с , вы получите

            (19.5)

(штрихи обозначают дифференцирование по ).

Это ужасное нагромождение разных букв выглядит очень сложно. Но математически оно в точности совпадает с

.                    (19.6)

Вторая скобка, действуя на , даст  минус . Первая скобка, действуя на эти два члена, даст член с , члены с первыми производными  и с первой производной . А теперь вспомните, что решения в нулевом магнитном поле (см. гл. И, § 3) изображают частицу с эффективной массой , даваемой формулой

.

Если вы затем положите  и снова вернетесь к , то легко убедитесь, что (19.6) это то же самое, что первая часть (19.3). (Происхождение члена с потенциальной энергией хорошо известно, и я не буду им заниматься.) Утверждение (19.1) о том, что векторный потенциал умножает все амплитуды на экспоненциальный множитель, равнозначно правилу, что оператор импульса  заменяется на , как мы и сделали в уравнении Шредингера (19.3).

 

Categories

1
Оглавление
email@scask.ru