Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава шестая. ВЕДОМЫЕ СЕТЬЮ ПРЕОБРАЗОВАТЕЛИ СРЕДНЕЙ И БОЛЬШОЙ МОЩНОСТИ6.1. ПРИМЕНЕНИЕ ВЕНТИЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ В ЭНЕРГЕТИКЕ И ЭЛЕКТРОТЕХНИКЕПроблемы энергетической электроники (преобразовательной техники) тесно связаны с проблемами электротехники конца XX в. Энергетическая электроника давно уже стала предметом совместных исследований и разработок специалистов в области промышленной электроники, электротехники, электромеханики и электроэнергетики. Достижения преобразовательной техники во многом определяют прогресс в названных областях техники. Однако внедрение силовых вентильных преобразователей в различные отрасли, в том числе в энергетику и электротехнику, порождает ряд сложных проблем и в области электроэнергетики и электротехники, и в области электронной схемотехники. Перечислим основные области применения силовых вентильных преобразователей. Вентильные преобразователи широко применяются для преобразования электрической энергии, вырабатываемой и передаваемой в виде переменного напряжения стандартной частоты Гц в электрическую энергию другого вида — в постоянный ток или переменный ток с нестандартной ( или ) или изменяемой частотой. Почти половина энергии в нашей стране потребляется в преобразованном виде, прежде всего в виде постоянного тока. Электропривод постоянного тока, в том числе тяговый электропривод, мощные электротермические и электротехнологические установки — наиболее энергоемкие потребители постоянного тока. Для их питания ток промышленной частоты преобразуется в постоянный ток с помощью выпрямителей. Растет группа потребителей электроэнергии, которые нуждаются в переменном токе повышенной или пониженной частоты, а нередко требуют использования регулируемой частоты (установки часточно-регулируемого электропривода переменного тока, индукционные установки, многие электротермические и электротехнологические . Для питания таких потребителей применяют различные тиристорные преобразователи частоты. Преобразователи частоты делятся на непосредственные, в которых происходит однократное преобразование электрической энергий (как правило, на выходе формируется напряжение пониженной частоты Гц), и преобразователи со звеном постоянного тока, которые состоят из выпрямителя, преобразующего переменный ток в постоянный, и автономного инвертора, преобразующего постоянный ток в переменный ток повышенной, пониженной или изменяющейся частоты. Таким образом, значительное число потребителей электроэнергии большой мощности подключается к промышленной сети через вентильные преобразователи различных типов. Вентильные преобразователи являются в настоящее время одним из самых распространенных потребителей электрической энергии в сетях, причем их суммарная мощность соизмерима с мощностью сети. Вентильные преобразователи являются нелинейной нагрузкой сети, и их работа сильно влияет на режимы сети и качество электрической энергии. Обратимся к электроэнергетике. Важной областью применения вентильных преобразователей являются линии электропередачи в электрических сетях и системах. В первую очередь речь идет о линиях передач постоянного тока, которые экономически эффективны для передачи энергии на большие расстояния. Такая линия передач на входе содержит мощный тиристорный выпрямитель, преобразующий энергию тока частоты 50 Гц в постоянный ток. На выходе лииии устанавливается мощный тиристорный инвертор, преобразующий постоянный ток в переменный. Обычно линии передач постоянного тока отдают энергию в системы, которые содержат другие мощные источники переменного тока. Инвертер, работающий на сеть, в которой имеются мощные источники переменного тока, называется ведомым сетью (или зависимым) инвертором. Для повышения качества регулирования параметров электрической энергии и запаса устойчивости энергосистем в последние годы стали использовать так называемые вставки постоянного тока. Так же, как и описанная выше система передачи энергии постоянным током, такие устройства содержат выпрямитель и ведомый сетью инвертор, однако эти агрегаты располагаются рядом и линия постоянного тока между ними имеет очень небольшую длину. Второй областью применения вентильных преобразователей в электроэнергетике являются тиристорные источники реактивной мощности, позволяющие вырабатывать и регулировать реактивную мощность для компенсации ее дефицита в энергосистеме. Третьей областью применения вентильных преобразователей в электроэнергетике является использование преобразователей для обеспечения работы основного оборудования электростанций, в частности для возбуждения синхронных гидро- или турбогенераторов и компенсаторов (схемы тиристорного возбуждения), для частотного пуска мощных генераторов (например, гидрогенераторов). И, наконец, в последние годы интенсивно разрабатываются новые способы получения электрической энергии. И здесь находят широкое применение вентильные преобразователи. Так МГД-электростанция нуждается в инверторах для преобразования постоянного тока, вырабатываемого МГД-генератором, в ток промышленной частоты. В работах по управляемому термоядерному синтезу, которые широко ведутся в настоящее время, также используются вентильные преобразователи. Преобразователи нужны и для таких нетрадиционных источников электроэнергии, как солнечные батареи, термохимические генераторы, генераторы, использующие энергию ветра, и т. п. Здесь перечислены только основные области применения вентильных преобразователей в электроэнергетике и электротехнике, но и по этому перечню можно заключить, что специалист в этих областях постоянно сталкивается с вентильными преобразованиями, причем их работа существенно влияет на функционирование энергетического оборудования.
|
1 |
Оглавление
|