Главная > Физика, 9 кл. (Буховерцев Б.Б.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава III. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА. ГАЗОВЫЕ ЗАКОНЫ

12. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Уравнение состояния. Мы детально рассмотрели поведение идеального газа с точки зрения молекулярно-кинетической теории. Была определена зависимость давления газа от концентрации его молекул и температуры (формула 2.10). На основе этой зависимости можно получить уравнение, связывающее все три макроскопических параметра , характеризующие состояние данной массы достаточно разреженного газа. Это уравнение называют уравнением состояния идеального газа Подставим в уравнение выражение для концентрации газа. Учитывая формулы (1.3) и (1.7), концентрацию газа можно представить следующим образом:

где — постоянная Авогадро, — масса газа, М — его молярная масса.

После подстановки (3.1) в (2.10) будем иметь:

Произведение постоянной Больцмана и постоянной Авогад называют универсальной газовой постоянной и обозначают буквой

Подстаьляя в уравнение (3.2) вместо произведения универсальную газовую постоянную получим уравнение состояния для произвольной массы идеального газа:

Единственная величина в этом уравнении, зависящая от рода газа, — это его молярная масса.

Из уравнения состояния (3.4) вытекает связь между давлением, объемом и температурой идеального газа в двух любых состояниях.

Если индексом обозначить параметры, относящиеся к первому состоянию, а индексом 2 — параметры, относящиеся ко второму состоянию, то согласно уравнению (3.4) для данной массы газа

Правые части этих уравнений одинаковы. Следовательно, должны быть равны и их левые части:

Уравнение состояния в форме (3.5) ност название уравнения Клапейрона и представляет собой одну из форм записи уравнения состояния.

Уравнение состояния в форме (3.4) было Епервые получено великим русским ученым Д. И. Менделеевым. Поэтому его называют уравнением Менделеева — Клапейрона.

Экспериментальная проверка уравнения состояния. В справедливости уравнения состояния в форме (3.5) можно убедиться с помощью прибора, изображенного на рисункь 31.

Рис. 31

Герметический гофрированный сосуд соединен с манометром М, регистрирующим давление внутри сосуда. При вращении винта В объем сосуда меняется. Об объеме можно судить с помощью линейки Л. Температура газа в сосуде равна температуре окружающего воздуха и регистрируется термометром.

Измеряя давление температуру Т и объем V газа в начальном состоянии (рис. 31, а), можно вычислить отношение (надо помнить, что Т — это абсолютная температура, а не температура по шкале Цельсия).

После этого нужно изменить объем сосуда и нагреть газ, поместив сосуд в горячую воду (рис. 31, б). Измерив снова давление газа объем и температуру можно вычислить отношение

В пределах точности, обеспечиваемой экспериментальной установкой, уравнение состояния (3.5) выполняется. Лишь при давлениях в тысячи атмосфер отклонения результатов эксперимента от предсказываемых уравнением состояния идеального газа, становятся существенными. Плотные газы нельзя даже приближенно считать идеальными.

1
Оглавление
email@scask.ru