Глава III. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА. ГАЗОВЫЕ ЗАКОНЫ
12. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА
Уравнение состояния. Мы детально рассмотрели поведение идеального газа с точки зрения молекулярно-кинетической теории. Была определена зависимость давления газа от концентрации его молекул и температуры (формула 2.10). На основе этой зависимости можно получить уравнение, связывающее все три макроскопических параметра , характеризующие состояние данной массы достаточно разреженного газа. Это уравнение называют уравнением состояния идеального газа Подставим в уравнение выражение для концентрации газа. Учитывая формулы (1.3) и (1.7), концентрацию газа можно представить следующим образом:
где — постоянная Авогадро, — масса газа, М — его молярная масса.
После подстановки (3.1) в (2.10) будем иметь:
Произведение постоянной Больцмана и постоянной Авогад называют универсальной газовой постоянной и обозначают буквой
Подстаьляя в уравнение (3.2) вместо произведения универсальную газовую постоянную получим уравнение состояния для произвольной массы идеального газа:
Единственная величина в этом уравнении, зависящая от рода газа, — это его молярная масса.
Из уравнения состояния (3.4) вытекает связь между давлением, объемом и температурой идеального газа в двух любых состояниях.
Если индексом обозначить параметры, относящиеся к первому состоянию, а индексом 2 — параметры, относящиеся ко второму состоянию, то согласно уравнению (3.4) для данной массы газа
Правые части этих уравнений одинаковы. Следовательно, должны быть равны и их левые части:
Уравнение состояния в форме (3.5) ност название уравнения Клапейрона и представляет собой одну из форм записи уравнения состояния.
Уравнение состояния в форме (3.4) было Епервые получено великим русским ученым Д. И. Менделеевым. Поэтому его называют уравнением Менделеева — Клапейрона.
Экспериментальная проверка уравнения состояния. В справедливости уравнения состояния в форме (3.5) можно убедиться с помощью прибора, изображенного на рисункь 31.
Рис. 31
Герметический гофрированный сосуд соединен с манометром М, регистрирующим давление внутри сосуда. При вращении винта В объем сосуда меняется. Об объеме можно судить с помощью линейки Л. Температура газа в сосуде равна температуре окружающего воздуха и регистрируется термометром.
Измеряя давление температуру Т и объем V газа в начальном состоянии (рис. 31, а), можно вычислить отношение (надо помнить, что Т — это абсолютная температура, а не температура по шкале Цельсия).
После этого нужно изменить объем сосуда и нагреть газ, поместив сосуд в горячую воду (рис. 31, б). Измерив снова давление газа объем и температуру можно вычислить отношение
В пределах точности, обеспечиваемой экспериментальной установкой, уравнение состояния (3.5) выполняется. Лишь при давлениях в тысячи атмосфер отклонения результатов эксперимента от предсказываемых уравнением состояния идеального газа, становятся существенными. Плотные газы нельзя даже приближенно считать идеальными.