Главная > Физика, 9 кл. (Буховерцев Б.Б.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

16. РАБОТА В ТЕРМОДИНАМИКЕ

Работа в механике и термодинамике. В механике работа определяется как произведение модулей силы и перемещения, умноженное на косинус угла между ними. Работа совершрется при действии силы на движущееся тело и равна изменению кинетической энергии тела.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. В результате меняется объем

Рис. 39

Рис. 40

тела, а его скорость остается равной нулю. Следовательно, работа в термодинамике, определяемая так же, как и в механике, равна изменению не кинетической энергии тела, а его внутренней энергии.

Изменение внутренней энергии при совершении работы. Почему при сжатии или расширении меняется внутренняя энергия тела? Почему, в частности, нагревается воздух при накачивании велосипедной шины?

Причина изменения температуры в процессе сжатия газа состоит в следующем: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется. При движении навстречу молекулам поршень передает им во время столкновений часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги и сообщающему мячу скорость, значительно большую той, которой он обладал до удара.

Если газ, напротив, расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует футболист, для того чтобы уменьшить скорость летящего мяча или остановить его; нога футболиста движется от мяча, как бы уступая ему дорогу.

При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Вычисление работы. Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис. 39). Проще всего вначале вычислить не работу силы действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сам газ, действуя на поршень с силой Согласно третьему закону Ньютона

Модуль силы, действующей со стороны газа на поршень, равен: где — давление газа, площадь поршня. Пусть газ расширяется и поршень смещается в направлении

силы малое расстояние Если перемещение мало, то давление газа можно считать постоянным.

Работа газа равна:

Эту работу можно выразить через изменение объема газа. Начальный объем а конечный Поэтому

где изменение объема газа.

При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают. В процессе расширения газ передает энергию окружающим телам.

Если газ сжимается, то формула (4.3) для работы газа остается справедливой. Но теперь и поэтому (рис. 40).

Работа А, совершаемая внешними телами над газом, отличается от работы газа А только знаком: так как сила действующая на газ, направлена против снлы а перемещение остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна:

Знак минус указывает, что при сжатии газа, когда работа внешней силы положительна. Понятно, почему в этом случае при сжатии газа направления силы и перемещения совпадают. Совершая над газом положительную работу, внешние тела передают ему энергию. При расширении газа, наоборот, работа внешних тел отрицательна так как Теперь направления силы и перемещения противоположны.

Выражения (4.3) и (4.4) справедливы не только при сжатии или расширении газа в цилиндре, но и при малом изменении объема любой системы. Если процесс изобарный то эти формулы можно применять и для больших изменений объема.

Геометрическое истолкование работы. Работе А газа для случая постоянного давления можно дать простое геометрическое истолкование.

Построим график зависимости давления газа от объема (рис. 41). Здесь площадь прямоугольника ограниченная графиком осью V и отрезками

Рис. 41

Рис. 42

равными давлению газа, численно равна работе (4.3).

В общем случае при произвольном изменении объема газа давление не остается неизменным Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис. 42). В этом случае для вычисления работы нужно разделить общее изменение объема на малые части, вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему будет численно равна площади фигуры, ограниченной графиком зависимости от V, осью V и отрезками равными давлениям в начальном и конечном состояниях.

1. От каких физических величин зависит внутренняя энергия тела?

2. Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту. 3. Чему равна внутренняя энергия идеального одноатомного газа? 4. Моль какого газа — водорода или гелия — имеет большую внутреннюю энергию при одинаковой температуре газов? 5. Почему газ при сжатии нагревается? 6. Чему равна работа, совершаемая внешними силами при сжатии и расширении тел?

1
Оглавление
email@scask.ru