50. ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ТОЧЕЧНОГО ЗАРЯДА
Вывод формулы для потенциала электрического поля точечного заряда в зависимости от расстояния довольно сложен, и мы на нем останавливаться не будем. Напряженность поля точечного заряда убывает с расстоянием, и для нахождения потенциала нужно вычислять работу переменной кулоновской силы.
Выражение для потенциала поля точечного заряда имеет вид:
Очевидно, что потенциал точек поля положительного заряда также положителен а отрицательного отрицателен
Формула (8.25) соответствует определенному выбору нулевого уровня потенциала. Принято считать потенциал бесконечно удаленных от заряда точек поля равным нулю: и Такой выбор нулевого уровня удобен, но не обязателен. Можно было бы к потенциалу (8.25) прибавить любую постоянную величину. От этого разность потенциалов между любыми точками поля не изменяется, а именно она имеет практическое значение.
Если потенциал бесконечно удаленных точек принят за нулевой, потенциал поля точечного заряда будет иметь простой физический смысл. Подставляя в формулу (8.24) значение получим
Следовательно, потенциал электростатического поля на расстоянии от точечного заряда численно равен работе поля по перемещению единичного положительного заряда из данной точки пространства в бесконечно удаленную точку.
Формула (8.25) справедлива также и для потенциала поля равномерно заряженного шара на расстояниях, больших или равных его радиусу, так как поле равномерно заряженного шара вне его и на его поверхности совпадает с полем точечного заряда, помещенного в центре сферы.
Мы рассмотрели потенциал поля точечного заряда. Заряд любого тела можно мысленно разделить на столь малые элементы, что каждый из них будет представлять собой точечный заряд. Тогда потенциал поля в произвольной точке определится как алгебраическая сумма потенциалов, создаваемых отдельными точечными зарядами
Это соотношение является следствием принципа суперпозиции полей
Потенциальная энергия взаимодействия двух точечных зарядов. Зная выражение для потенциала поля точечного заряда, можно вычислить потенциальную энергию взаимодействия двух точечных зарядов. Это может быть, в частности, энергия взаимодействия электрона с атомным ядром.
Потенциальная энергия заряда в электрическом поле точечного заряда равна произведению заряда на потенциал поля заряда
Используя формулу (8 25), получим выражение для энергии:
Если заряды имеют одинаковые знаки, то потенциальная энергия их взаимодействия положительна. Она тем больше, чем меньше расстояние между зарядами, так как работа, которую могут совершить кулоновские силы при отталкивании зарядов друг от друга, будет больше. Если заряды имеют противоположные знаки, то энергия отрицательна и максимальное ее значение, равное нулю, достигается при Чем больше тем большую работу совершат силы притяжения при сближении зарядов