Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
18. ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИЗакон сохранения энергии. К середине XIX в. многочисленные опыты ученых доказали, что механическая энергия никогда не пропадает бесследно. Опускаются гири, вращающие лопасти в сосуде с ртутью, и температура ртути повышается на строго определенное число градусов. Падает молот на кусок свинца, и свинец нагревается тоже вполне определенным образом. На основании множества подобных наблюдений и обобщения опытных фактов был сформулирован закон сохранения энергии: Энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую. Закон сохранения энергии управляет всеми явлениями природы и связывает их воедино. Он выполняется абсолютно точно: не известно ни одного случая, когда бы этот закон не выполнялся. Этот закон был открыт в середине XIX в. немецким ученым, врачом по образованию, Р. Майером (1814—1878), английским ученым Д. Джоулем (1818—1889) и получил наиболее полную формулировку в трудах немецкого ученого Г. Гельмгольца (1821 — 1894). Первый закон термодинамики. Закон сохранения и превращения энергии, распространенный на тепловые явления, носит название первого закона термодинамики. В термодинамике рассматриваются тела, положение центра тяжести которых практически не изменяется. Механическая энергия тел остается постоянной, изменяться может лишь внутренняя энергия. До сих пор мы рассматривали процессы, в которых внутренняя энергия системы менялась либо за счет совершения работы, либо за счет теплообмена с окружающими телами. В общем случае при переходе системы из одного состояния в другое внутренняя энергия будет меняться одновременно как за счет совершения работы, так и за счет передачи теплоты. Первый закон термодинамики формулируется именно для таких общих случаев: Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
Первый закон термодинамики (4.10) связывает изменение внутренней энергии с изменением макроскопических параметров V и Т, так как через изменения этих параметров выражается работа и количество теплоты. В частном случае изолированной системы над ней не совершается работа Часто вместо работы А внешних тел над системой рассматривают работу А системы над внешними телами. Учитывая,
Рис. 44
Рис. 45 что
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами. Невозможность создания вечного двигателя. Из первого закона термодинамики вытекает невозможность создания вечного двигателя — устройства, способного совершать неограниченное количество работы без затрат топлива или каких-либо других материалов. Если к системе не поступает теплота Работа и количество теплоты — характеристики процесса изменения энергии. В данном состоянии система всегда обладает определенной внутренней энергией. Но нельзя говорить, что в ней содержится определенное количество теплоты или работы. Как работа, так и количество теплоты являются величинами, характеризующими изменение энергии системы в результате того или иного процесса. Внутренняя энергия системы может измениться одинаково как за счет совершения системой работы, так и за счет передачи окружающим телам какого-то количества теплоты. Нагретый газ в цилиндре может уменьшить свою энергию, остывая, без совершения работы (рис. 44). Но он может потерять точно такое же количество энергии, перемещая поршень, без отдачи теплоты окружающим телам. Для этого стенки цилиндра и поршень должны быть теплонепроницаемыми (рис. 45). В дальнейшем на протяжении всего курса физики мы будем знакомиться с различными другими формами энергии, способами их превращения и передачи.
|
1 |
Оглавление
|