Главная > Искусственный интеллект. Методы поиска решений
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.4. ИЗМЕНЕНИЯ ПРИ ПЕРЕБОРЕ НА ПРОИЗВОЛЬНЫХ ГРАФАХ

При переборе на графах, а не на деревьях, нужно внести некоторые естественные изменения в указанные алгоритмы. В простом методе полного перебора не нужно вносить никаких изменений; следует лишь проверять, не находится ли уже вновь построенная вершина в списках ОТКРЫТ или ЗАКРЫТ по той причине, что она уже строилась раньше в результате раскрытия какой-то вершины. Если это так, то ее не нужно вновь помещать в список ОТКРЫТ.

Несколько более сложные изменения должны быть сделаны в алгоритме равных цен:

(1) Если вновь построенная вершина уже имеется в списке ОТКРЫТ, то ее не следует вносить в этот список снова. Однако соответствующая ей величина стоимости может оказаться теперь меньше (может быть найден менее дорогой путь). Мы всегда связываем с вершинами списка ОТКРЫТ наименьшие из имевшихся до сих пор значений Точно так же указатель от вершины всегда должен быть направлен к породившей ее вершине, расположенной на том пути, стоимость которого оказалась наименьшей среди всех путей к этой вершине, рассмотренных к настоящему моменту.

(2) Если вновь построенная вершина уже имеется в списке ЗАКРЫТ, то, казалось бы, возможно, что для нее величина окажется меньше, чем раньше, так как направление ее

указателя должно быть выбрано заново. Но на самом деле этого не происходит. Позже мы докажем, что если в алгоритме равных цен некоторая вершина помещается -в список ЗАКРЫТ, то уже найдена наименьшая возможная величина § (и, следовательно, путь наименьшей стоимости, идущий к этой вершине).

Прежде чем делать какие-либо изменения в алгоритме перебора в глубину, нужно решить, что понимать под глубиной вершины в графе. Согласно обычному определению, глубина вершины равна единице плюс глубина наиболее близкой родительской вершины, причем глубина начальной вершины предполагается равной нулю. Тогда поиск в глубину можно было бы получить, выбирая для раскрытия самую глубокую вершину списка ОТКРЫТ (без превышения граничной глубины). Когда порождаются вершины, уже имеющиеся либо в списке ОТКРЫТ, либо в списке ЗАКРЫТ, пересчет глубины такой вершины может оказаться необходимым.

Даже в том случае, когда перебор осуществляется на полном графе, множество вершин и указателей, построенное в процессе перебора, тем не менее образует дерево. (Указатели по-прежнему указывают только на одну порождающую вершину.) В оставшейся части этой главы мы имеем дело с общим случаем поиска на графе, и, следовательно, в алгоритмах, которые мы будем обсуждать, явным образом учитываются эти дополнительные изменения.

1
Оглавление
email@scask.ru