Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Задачи управленияВ типичной задаче управления имеется процесс, представленный системой «устанавливаемых» переменных, которые должны управляться с помощью соответствующего управления, обеспечиваемого некоторым множеством управляющих переменных. Интересным примером служит задача о перевернутом маятнике на тележке (рис. 2.9). В этой задаче масса М прикреплена к концу стержня длины
Рис. 2.9. Перевернутый Маятник на тележке. Требуется, чтобы значения каждой из этих переменных поддерживались в определенных, заранее указанных границах. Управляющей переменной служит скорость тележки х, которая может принимать одно из двух значений и Описание состояний. Предположив, что переменные 0, 0 и х принимают дискретные значения с достаточно мелким шагом, можно считать состоянием вектор, составленный из этих трех переменных (пространством состояний при этом служит решетка в трехмерном пространстве 0, 0 и Операторы. Имеются ровно два оператора: 1. Применить управление 2. Применить управление Состояние, возникающее в результате применения одного из этих операторов, — это просто то состояние, которое описывается вектором Критерий достижения цели. Предположим, что целевое состояние описывается вектором В некоторых типичных задачах управления часто можно получить (аналитическими методами) уравнения разделяющих поверхностей, которые разбивают векторное пространство состояний на непересекающиеся области, такие, что для всех векторов из данной области в данный момент должно быть применено одно и то же управление (один и тот же оператор). В этих случаях несложное вычисление может дать ответ, который иначе получался бы с помощью поиска. Читатель должен понимать, что мы н? собираемся предлагать использовать поисковые процессы в случаях, когда известны прямые методы решения. Мы хотим лишь подчеркнуть, что часто можно воспользоваться эффективными методами перебора для решения тех задач, для которых прямые методы еще не найдены.
|
1 |
Оглавление
|