Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.5. Метрика Хаусдорфа IОдним из основных математических аспектов теории фракталов является вопрос о сходимости некоторой последовательности множеств к фракталу. К примеру, для того чтобы построить ковер Серпинского, мы начинаем с замкнутой треугольной области и, выкидывая на каждом шаге внутренние треугольники, получаем аппроксимирующие множества. Кажется вполне правдоподобным (см. рис. 2.5), что предельное множество в действительности является фракталом. Наша первая задача — разобраться с понятием предела последовательности множеств. Для этого необходимо определить подходящую метрику на интересующих нас множествах. Метрика, которой мы будем пользоваться, называется метрикой Хаусдорфа. Метрика Хаусдорфа определяется на множестве Требование компактности не ограничивает применимости дальнейших результатов, так как в наших построениях мы всегда будем использовать только компактные множества; более того, оказывается, что и предельные множества — фракталы — всегда компактны. Обозначим через Е и F два непустых компактных подмножества Для произвольного множества Е из пространства
Замечание: в некоторых источниках дилатация определяется с использованием открытого шара, в то время как мы используем замкнутый шар. Наш выбор обусловлен тем, что в случае замкнутого шара доказательства теорем из прил. Определение. Пусть Е и F — непустые компактные подмножества
Пример. Пусть А и В — эллипсы (рис. 3.13):
Видно, что наименьшее Доказательство следующей теоремы вынесено в прил. А.3.
Рис. 3.13. Определение расстояния Хаусдорфа через дилатации Теорема 3.5.8. Пусть Следствие 3.5.1. Пусть
Введем
Тогда Е — непустой компакт, и последовательность множеств
Это следствие непосредственно применимо к фракталам, при построении которых последовательно удаляются открытые подмножества. Примерами могут служить классическое множество Кантора (рис. 2.20) и ковер Серпинского (рис. 2.5). И в том, и в другом случае аппроксимирующие множества сходятся к соответствующим фракталам в метрике Хаусдорфа.
|
1 |
Оглавление
|