Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Снежинка Коха.Граница снежинки, придуманной Гельгом фон Кохом в 1904 году (рис. 2.2), описывается кривой, составленной из трех одинаковых фракталов размерности . Каждая треть снежинки строится итеративно, начиная с одной из сторон равностороннего треугольника. Пусть — начальный отрезок. Уберем среднюю треть и добавим два новых отрезка такой же длины, как показано на рис. 2.3. Назовем полученное множество . Повторим данную процедуру многократно, на каждом шаге заменяя среднюю треть двумя новыми отрезками. Обозначим через фигуру, получившуюся после n-го шага.
Рис. 2.2. Снежинка Коха Интуитивно ясно, что последовательность кривых сходится к некоторой предельной кривой К. Мы проведем строгое математическое исследование сходимости таких последовательностей кривых и других множеств в п. 3.5 и в прил. А.3. Пока что предположим, что кривая К существует, и рассмотрим некоторые ее свойства.
Рис. 2.3. а) , б) , в) , г) Если взять копию К, уменьшенную в три раза то все множество К можно составить из таких копий. Следовательно, отношение самоподобия (2.1) выполняется при указанных N и , а размерность фрактала будет:
Еще одно важное свойство, которым обладает граница снежинки Коха — ее бесконечная длина (см. теорему 2.1.1). Это может показаться удивительным читателю, привыкшему иметь дело с кривыми из курса математического анализа. Обычно гладкие или хотя бы кусочно-гладкие, они всегда имеют конечную длину (в чем можно убедиться интегрированием). Мандельброт в этой связи опубликовал ряд увлекательных работ, в которых исследуется вопрос об измерения длины береговой линии Великобритании. В качестве модели он использовал фрактальную кривую, напоминающую границу снежинки за тем исключением, что в нее введен элемент случайности, учитывающий случайность в природе. В результате оказалось, что кривая, описывающая береговую линию, имеет бесконечную длину. Теорема 2.1.1. Граница снежинки Коха имеет бесконечную длину. Доказательство. Достаточно показать, что каждый из трех идентичных фракталов К, полученных итерациями (рис. 2.3), имеет бесконечную длину. Пусть исходный отрезок Ко имеет единичную длину. Тогда длина кривой равна 4/3. Длина кривой равна . Продолжая таким образом имеем, что кривая после шага имеет длину Следовательно, длина предельной кривой К равна бесконечности:
|
1 |
Оглавление
|