Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ВВЕДЕНИЕА. Определения. Аксиомы. Теоремы. Строгое изложение любой части математики основывается на введении некоторых простейших неопределяемых понятий (например, для геометрии: «точка», «прямая», «лежать на», «между» и т. д.). Обычно этим понятиям отвечает некоторый очевидный, интуитивно ясный смысл. Далее формулируются некоторые первичные, недоказуемые (в принципе или при данной форме изложения) утверждения; они называются аксиомами или постулатами. Например: если две плоскости имеют общую точку, то они имеют и общую прямую. Это аксиоматически принимаемое положение использует неопределяемые понятия: «плоскость», «прямая», «точка», «лежать на» (чтобы фактически не употреблять других понятий, пришлось бы сформулировать аксиому несколько длиннее: если существует точка, лежащая на двух плоскостях, то существует и прямая, лежащая на этих плоскостях). Кроме специфических понятий каждой математической теории (арифметики, геометрии и т. п.), во всей математике используются также понятия множества (как определенного собрания любых элементов), соответствия (в выражениях типа «пусть каждому х соответствует определенное у» и т. п.) и общие правила логического ведения рассуждений. Дальнейшим используемым понятиям даются определения в терминах первоначальных или уже введенных понятий. Пример: отрезком АВ прямой называется множество точек, включающее точки А, В и все точки, лежащие между ними. В этом определении, например, употреблены понятия «множество», «между» и т. д. Относительно первоначальных и введенных с их помощью дальнейших понятий доказываются (на основе аксиом и ранее доказанных утверждений, с помощью обычных правил логики) новые утверждения, называемые теоремами, иногда леммами (обычно леммой называют утверждение, не имеющее важного самостоятельного значения, но используемое при доказательстве других теорем). Полностью выдержанное по указанной схеме изложение математических дисциплин называется аксиоматическим (точнее, полуформальным). Фактически осуществить его в полной мере в рамках учебника не удается, так как объем его получился бы слишком большим, а изложение очень утомительным. Поэтому и в школьных учебниках и в данной книге аксиомы приводятся лишь частично, часть теорем сообщается без доказательства, а доказательства некоторых других построены с большим или меньшим привлечением интуитивно ясных соображений (которые в принципе могли бы быть доказаны исходя из полной системы аксиом). Б. Логическое следование. Необходимые и достаточные условия. Утверждения (теоремы) в математике, явно или неявно, имеют следующую форму: «если..., то...». Например: «если одна из медиан треугольника является его высотой, то треугольник равнобедренный». Утверждение: «медианы треугольника делят друг друга в отношении 2:1» - можно сформулировать в сходной форме: «если отрезки AM и BN являются медианами треугольника ABC, то они делят друг друга в отношении 2:1». Таким образом, для доказательства теоремы необходимо бывает установить, что из некоторых предположений (посылок) с логической необходимостью вытекает некоторый результат (вывод). В логике тот факт, что из посылки А вытекает вывод В, обозначают так: А В (или каким-либо сходным образом). В этом случае говорят, что А является достаточным условием для В. Прямая, обратная, противоположная теоремы. Доказательства от противного. Наряду с каким-либо утверждением А (при этом вообще, под утверждением понимается любое повествовательное предложение, о котором всякий раз можно сказать, что оно истинно либо ложно) можно рассматривать его отрицание, утверждение «не А», обозначаемое короче А и состоящее в том, что А ложно. А и Приведем примеры.
Ясно, что в примерах 1) и 3) утверждение А или Представим себе теперь некоторое математическое утверждение (теорему) вида
Их называют соответственно обратной теоремой, противоположной теоремой, теоремой, обратной противоположной; следует иметь при этом в виду, что теоремой мы обычно называем истинное утверждение, вообще же для любого утверждения это заранее не предполагается. Утверждения Доказательство этого правила вытекает из условия считать, что из двух высказываний А и Пусть В самом деле, если имеет место Пусть Действительно, пусть А истинно. Тогда В силу эквивалентности утверждений Если а — натуральное число, то корень Если b — дробное рациональное число (т. е. не целое и не иррациональное), то его квадрат не может быть натуральным числом. Доказательство в этой второй равносильной формулировке провести проще. Что касается теоремы, обратной данной, то возможно, что она и неверна (нет прямой связи между справедливостью утверждений Остановимся еще на приеме доказательства «от противного» (по-латыни reductio ad absurduin - приведение к абсурду). Логическая сущность его такова (она близка к замене данного утверждения противоположным обратному). Пусть требуется доказать предложение Пример: доказательство теоремы планиметрии «две прямые, параллельные третьей, параллельны между собой». Его можно провести так. Пусть прямые а и b параллельны прямой с. Требуется доказать, что Г. Метод математической индукции. Пусть имеется некоторое утверждение о натуральном числе 1) данное утверждение справедливо при 2) из предположения, что оно справедливо при некотором значении Тогда данное утверждение справедливо для всех натуральных
Доказательство. 1) При
и, очевидно, верна. 2) Пусть при n = k формула (4) верна:
Положим
Это и есть формула (4), записанная для Рекомендуем читателю самостоятельно доказать формулу для суммы квадратов натуральных чисел:
По вопросам, затронутым очень кратко во введении, можно рекомендовать для чтения книгу: Р. Столл. Множества. Логика. Аксиоматические теории, Изд-во «Просвещение», 1968.
|
1 |
Оглавление
|