Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5. Группа симметрий тетраэдра.Тетраэдр (рис. 27) имеет 4 оси симметрии
Кроме того, имеется 3 оси симметрии Поэтому имеется еще 3 (по числу
Итак, вместе с тождественным преобразованием получаем 12 перестановок. При указанных преобразованиях тетраэдр самосовмещается, поворачиваясь в пространстве; его точки при этом не изменяют своего положения относительно друг друга. Совокупность выписанных 12 перестановок замкнута относительно умножения, поскольку последовательное выполнение вращений тетраэдра снова будет вращением. Таким образом, получаем, группу, которая называется группой вращений тетраэдра. При других преобразованиях пространства, являющихся самосовмещениями тетраэдра, внутренние точки тетраэдра передвигаются относительно друг друга. А именно: тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через одно из его ребер и середину противолежащего ребра. Симметриям относительно этих плоскостей отвечают следующие транспозиции на множестве вершин тетраэдра:
Уже на основании этих данных можно утверждать, что группа всевозможных симметрий тетраэдра состоит из 24 преобразований. В самом деле, каждая симметрия, самосовмещая тетраэдр в целом, должна как-то переставлять его вершины, ребра и грани. В частности, как уже было сказано, в данном случае симметрии можно характеризовать перестановками вершин тетраэдра. Поскольку тетраэдр имеет 4 вершины, его группа симметрий не может состоять больше чем из 24 преобразований. Иными словами, она либо совпадает с симметрической группой 54, либо является ее подгруппой. Выписанные выше симметрии тетраэдра относительно плоскостей определяют всевозможные транспозиции на множестве его вершин. Поскольку эти транспозиции порождают симметрическую группу
отвечают соответственно двум вращениям вокруг оси
|
1 |
Оглавление
|