Главная > Прикладные нечеткие системы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1.4. НЕЧЕТКИЕ СИСТЕМЫ

Научная методология требует логической строгости, но проблемы доказательства предпосылок и гипотез, входящих в методологию, не вызывают энтузиазма. Причины этою явления в науке и технике, по-видимому, заключаются в том, что предпосылки и гипотезы, гак же как, впрочем, и аксиомы в математике, сами по себе нелогичны. Подобные проблемы решаются в настоящее время благодаря опыту и интуиции выдающихся специалистов. Однако в технических областях существует риск совершить серьезную ошибку, если тщательно не изучить предпосылки и гипотезы. Например, непредсказуемые аварии в системах обеспечения безопасности, неразумные выводы в информационных системах, разбалансированные системы автоматизации и многое другое возникает из-за того, что все предпосылки проектирования слишком расходятся с реальным положением дел.

Наука и техника полностью отвергают субъективизм, но, как сказано выше, новые открытия и изобретения рождаются в результате деятельности правого полушария человека, основанной на субъективных мыслях, а объективизация и логическое обоснование - всего лишь вторичные средства для передачи идей другому человеку. Более того, даже в процессе

объективизации необычайно полезно проявление субъективизма. Например, с точки зрения обработки нечеткостей даже в теории вероятностей, которую часто противопоставляет теории нечетких систем, нельзя получить выдающиеся результаты, пока экспериментатор не исследует в полной мере исходные данные, не оценит общую структуру проблемы, не исключит сомнительные данные или не примет других субъективных решений. Не говоря уже о том, что установить гипотезы и предпосылки нельзя иначе, как полагаясь на субъективное мнение.

Вопрос о том, как обрабатывать нечеткости, перекликается с вопросом о том, каким образом ввести в науку и технику субъективизм человека. И здесь не обойтись без нечетких множеств. Это математический метод, созданный для того, чтобы представлять смысловые нечеткости слов человека, это уникальный метод с точки зрения предоставления возможностей математически обрабатывать субъективные данные.

Возможность математически представлять и логически обрабатывать смысл слов означает, что появились новые средства, которые позволяют удовлетворить трем необходимым условиям реализации человеко-машинных систем, о которых шла речь выше. А именно: можно ожидать, что благодаря этим средствам искусственный интеллект сможет понимать нечеткости и глубинный смысл естественного языка и в будущем его общение с человеком станет более естественным. Кроме того, можно будет представить в виде нечетких тезисов даже такие крайне нечеткие макрознания, как здравый смысл, если сузить специальную область. Все это существенно повысит практическую ценность искусственного интеллекта. Последнее условие - представление нечетких мыслей - наиболее трудное для реализации. Мысли, возникающие в правом полушарии человека, нельзя назвать совсем нечеткими. Однако, если прикладная область ограниченна, они могут пригодиться как качественные логические отношения между макрознаниями, поэтому в какой-то степени возможны логические выводы, присущие человеку.

Выходные данные, получаемые нечеткими системами, разумеется, будут нечеткими. По-видимому, найдутся люди, которые окажутся в тупике из-за нечетких ответов системы, помогающей принятию решений; затруднения вызовут ответы о микрознаниях. Что же касается макрознаний, то они по

сути являются нечеткими, проблемными, поэтому нечеткость ответов о таких знаниях естественна. Нечеткие ответы будут стимулировать работу правого полушария человека, что повысит эффективность человеко-машинной системы.

Приведем примеры человеко-машинных систем, которые предназначены для обработки нечетких знаний (своего рода реализация универсальных роботов в услужении человеку). В технических областях - автоматическое управление высокого уровня, автоматический перевод, интеллектуальные работы, системы поддержания целостности баз данных и системы обеспечения безопасности, распознавание изображений и речи, автоматическое проектирование, поиск информации, базы знаний, интеллектуальные терминалы, автоматизация домашних работ и др. В медицине диагностика, китайская медицина, искусственные встроенные органы, роботы для ухода за больными, диспансеризация и медицинское наблюдение после выздоровления, системы здравоохранения, протезы и др. В сфере бизнеса - помощь в принятии экономических решений, маркетинг, советы по вложению капитала, различного рода управление и планирование, управление системами, помощь в подготовке контрактов, автоматизация учреждений и др. Кроме того, оценка состояния окружающей среды, анализ риска, предсказание землетрясений, прогнозы погоды для сельского хозяйства, геологическая съемка, оценка качества сельскохозяйственных продуктов, системы самообучения, дегустация, обработка данных анализа и т. д.

В настоящее время наметилась тенденция применения теории нечетких множеств в гуманитарных науках и в социологии. В ближайшем будущем появятся модели деятельности человека, модели мышления, психологические модели, модели надежности, экономические модели, которые будут активно использоваться в обучении, законодательстве, опросе общественного мнения и других проблемах, анализе и оценке данных.

Теория нечетких множеств, возможно, сыграет большую роль при решении таких проблем, как представление и приобретение макрознаний, методы макромышления (макровыводов), форматы данных для стимулирования правого полушария, отождествление функций принадлежности, прогнозирование технических характеристик систем, систематические методы проектирования и т. п. Надеемся,

что появление новой методологии, учитывающей нечеткости, заложит фундамент решения этих проблем.

ЛИТЕРАТУРА

1. Терано Т. и др. Прогресс нечеткой технологии.-Токио: Коданся, 1981.

2. Синагава X. Компьютер правого полушария,-Токио: Дайямондося, 1986.

3. Терано Т. Введение в системотехнику - вызов нечетким проблемам.-Токио: Керицу сюппан, 1985.

4. Уэно X. Введение в инженерию знаний,-Токио: Омся, 1985.

5. Кобаяси С. Современное состояние и будущее системотехники знаний. Кэйсоку то сэйге, 1988. Т. 27, № 10.

6. Современное состояние и проблемы исследования искусственного интеллекта. Дзинко тино гаккайси, 1988. Т. 3, № 5.

7. Накамура и др. Нечеткие знания - развитие новых идей.-Токио: Никкан коге симбунся, 1989.

1
Оглавление
email@scask.ru