от радиоактивных веществ. Однако одновременно с процессом ионизации, т. е. разделения нейтральных молекул на заряженные ионы, в газе происходит и обратный процесс молизации или рекомбинации, т. е. соединения ионов в нейтральные молекулы. В равновесном состоянии газов оба эти. процесса уравновешиваются: число ежесекундно ионизирующихся молекул равно числу нейтральных молекул, вновь образовавшихся из ионов за то же время. 
Если на газ внешнего ионизирующего воздействия не оказывается, то естественная концентрация ионов в нем будет очень малой, и ток через газ практически не обнаруживается. Вызвать заметный электрический ток в газе (так называемый газовый разряд) можно, если: 1) при помощи постороннего воздействия (ионизатора) непрерывно разбивать нейтральные молекулы газа на ионы и тем самым увеличивать концентрацию свободных зарядов в газе. Это можно сделать, подвергая газ интенсивному облучению потоком быстрых частиц (электронов и др.), ультрафиолетовыми, рентгеновскими лучами, лучами радиоактивных веществ, а также повышая температуру газа, чтобы увеличить интенсивность ионизации при тепловых столкновениях. В этом случае вместе с прекращением действия внешнего ионизатора прекращается и ток через газы; такая проводимость газа называется несамостоятельной; 2) приложить настолько большую разность потенциалов, чтобы имеющиеся в газе ионы, разгоняясь в электрическом поле, приобретали энергии, достаточные для ионизации нейтральных молекул при столкновениях с ними. В этом случае каждый ион при одном столкновении вызывает появление двух или нескольких ионов; эти ионы в свою очередь разгоняются в поле и разбивают нейтральные молекулы на ионы. Таким образом, число ионов в газе быстро растет, и газ приобретает заметную проводимость; такая проводимость называется самостоятельной. 
 
Рис. III.42 
Следует различать два вида столкновений между частицами, в частности между ионами, электронами и нейтральными молекулами. При одних столкновениях частицы не испытывают никаких внутренних изменений, а только обмениваются кинетическими энергиями движения. Такие столкновения называются упругими; сумма кинетических энергий частиц до и после удара остается постоянной. 
При других — неупругих — столкновениях атомы и молекулы испытывают изменения в своем строении; происходит переход кинетической энергии соударяющихся частиц в потенциальную энергию взаимодействия составных частей этих атомов и молекул — ядер и вращающихся вокруг них электронов. Такой процесс называется возбуждением атомов или молекул; при обратном переходе в нормальное состояние поглощенная энергия возвращается в виде энергии излучения. Наконец, при неупругих столкновениях возможно также  
 
изменение состава атомов и молекул; в частности нейтральная молекула может быть разбита на два иона или от атома может быть оторван электрон и т. д. Ионизация газов при соударениях является, результатом неупругих столкновений. 
Для проводимости газов при некоторых условиях (в частности при малых давлениях газа в сосуде) заметное значение имеет выбивание электронов с поверхности катода при падении на него положительных ионов. Каждый такой ион может освободить из катода несколько электронов в зависимости от энергии, приобретенной им в электрическом поле, а также — от работы выхода электрона из вещества катода. Освобожденные из катода электроны, подхваченные электрическим полем, могут на пути к аноду вызвать ионизацию газа; кроме того, этот упорядоченный поток электронов составляет некоторую (иногда значительную) долю всего тока, протекающего через газ: 
Если сила тока, проходящая через газы, мала и не может быть непосредственно обнаружена гальванометром  то прибегают к косвенным методам. В частности, как это показано на рис. III.42, в цепь последовательно с газовым промежутком включается резистор с сопротивлением
 то прибегают к косвенным методам. В частности, как это показано на рис. III.42, в цепь последовательно с газовым промежутком включается резистор с сопротивлением  порядка десятков и сотен миллионов ом. На концах этого резистора образуется разность потенциалов
 порядка десятков и сотен миллионов ом. На концах этого резистора образуется разность потенциалов  которую измеряют, например, ламповым вольтметром, не замыкающим концы этого резистора. Тогда, зная
 которую измеряют, например, ламповым вольтметром, не замыкающим концы этого резистора. Тогда, зная  и измерив
 и измерив  можно рассчитать силу тока через газ
 можно рассчитать силу тока через газ  Например, если
 Например, если  , то
, то 